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The content presented in this informal writing consists, mostly, of my solutions to some problems showing
in tests or assignments I had while taking the graduate course Math 250A at UC Berkeley (Fall 2014). Also
I propose solutions to other problems that, although were not part of the course, I solved as part of my
coursework. I warn the reader about that most of the solutions provided might be improved a lot; they are
just the best I could do. I don’t claim any ownership of any of the ideas presented; this is mainly because even
those solutions that apparently are mine, ultimately belong to my kind and excellent professors Alexandre
Turull and Vera Serganova, when are not a subconscious reproduction of techniques showed in Algebra by
Serge Lang and/or Algebra by Thomas Hungerford. On the other hand, I claim full ownership of each of
the potential existing errors. If the reader finds mistakes or have questions, please don’t hesitate to email me
at felixgotti@berkeley.edu. I will greatly appreciate your feedback. Having said this, I hope the small set of
problems presented can be useful to the reader.

1 Group Theory

Problem 1. Let G be an abelian subgroup of the symmetric group Sn and p1, . . . , pk be all prime
divisors of |G|. Prove that p1 + · · ·+ pk ≤ n.

Solution: Suppose, by way of contradiction, that p1 + · · · + pk > n. Since pi is a prime dividing |G|,
the group G must have an element of order pi. Therefore, for each i, G contains an element σi whose
cycle-type decomposition is the product of pi-cycles. For each j, denote by Mj the set of elements of
Jn = {1, . . . , n} that are not fixed by σj . Since G is abelian Mi and Mj are disjoint for i 6= j. The
fact that |Mj | ≥ pj implies that

|Jn| ≥ |M1|+ · · ·+ |Mk| ≥ p1 + · · ·+ pk > n;

which is a contradiction. Hence p1 + · · ·+ pk ≤ n.
�

Problem 2. Let G be a finite group operating on a finite set S. For a fixed x ∈ G define f(x) as the
number of elements s ∈ S such that xs = s. Prove that the number of orbits of G in S is equal to

1

|G|
∑
x∈G

f(x).

Solution: Consider the set A = {(x, s) ∈ G× S : xs = s}. We denote the orbit of s ∈ S by Cs. Note
the |A| =

∑
x∈G f(x). On the other hand, by the Orbit-Stabilizer theorem,

|A| =
∑
s∈S
|Stab(s)| =

∑
s∈S

|G|
|Cs|

= |G|
∑
s∈S

1

|Cs|
.

Since
∑
s∈S

1
|Cs| equals the number of orbits, the desired formula follows.

�

Problem 3. How many necklaces can be designed with 17 pearls black and white if pearls with the
same color are indistinguishable.

Solution: Denote by S the set of all the necklaces of 17 pearls (having a lock) that can be designed
with black and white pearls. Since |S| = 217, the dihedral group G = D34 acts on S in the obvious
way. Since we are interested in the necklaces having no lock, for us two necklaces are the same if and
only if they are in the same orbit with respect to the action of G on S. So we only need to count
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the number of orbits given by this action. The identity of G fixes the 217 necklaces; each of the 16
nontrivial rotations fixes 2 necklaces (this is because 17 is prime); and each of the 17 inversions fixes
29 necklaces. Therefore, by the formula for counting orbits given in the previous problem, the number
of necklaces we can design is

1

34
(217 + 16 ∗ 2 + 17 ∗ 29) = 28 +

216 + 16

17
.

Note that, by Fermat’s little theorem, 17 divides 216 + 24 = (216 − 1) + 17.
�

Problem 4. Classify the groups of order 20.

Solution: Let G be a group of order 20. If G is abelian, by the fundamental theorem of finitely
generated abelian groups, G must be isomorphic to either Z2 × Z2 × Z5 or Z4 × Z5.

Let G be a non-abelian group of order 20. Let n5 be the number of 5-Sylow subgroups of G. By
Sylow’s theorems, n5 = 1. Since there exists only one subgroup N of G having order 5, N must
be normal. Let H be a 2-Sylow subgroup. Then G is the semidirect product of N and H, namely
G ≈ N oφ H where φ : H → Aut(N).

Suppose first that H is isomorphic to the cyclic group Z4. If φ is a nontrivial homomorphisms, it
maps the generator of Z4 to the unique element of order 2 of Z4 or to one of the two elements of order
4. Mapping the generator for each of the elements of order 4 gives isomorphic non-abelian groups.
Let φ1 and φ2 be the homomorphisms we obtain when the generator of Z4 is mapped to an element of
order 2 or an element of order 4 respectively. Since | kerφ1| = 2 and | kerφ2| = 1, the groups Z5oφ1

Z4

and Z5 oφ2
Z4 are not isomorphic.

Suppose now that H is isomorphic to the Klein group Z2 × Z2. There are three nontrivial ho-
momorphisms φ : Z2 × Z2 → Z4; they are given by sending two nonzero elements of Z2 × Z2 to the
unique element of order two in Z4, and the other two elements to the identity. By the symmetry
of the Klein group, the semidirect products induced by those φ are isomorphic non-abelian groups.
Then G ≈ Z5 oφ3

(Z2 × Z2) where φ3 is one of the two homomorphisms just mentioned. The group
found in this paragraph is not isomorphic to any of the groups found in the previous paragraph since
Z5 oφ0 Z2 × Z2 does not have any element of order 4. The absence of elements of order 4 forces
Z5 oφ3

Z2 × Z2 to be isomorphic to D20.
�

Problem 5. (I.52)
(a) Show that push-outs (i.e. fiber coproducts) exist in the category of abelian groups. In this case the
fiber coproduct of two homomorphisms f, g is denoted by X ⊕Z Y . Show that it is the factor group

X ⊕Z Y = (X ⊕ Y )/W,

where W is the subgroup consisting of all elements (f(z),−g(z)) with z ∈ Z.
(b) Show that the push-out of an injective homomorphism is injective.

Solution: Let f : Z → X and g : Z → Y be group homomorphisms. Since X and Y are abelian groups,
so is X ⊕Z Y . Define h : Z → X ⊕Z Y by h(z) = (f(z),−g(z)) +W . Also, define i1 : X → X ⊕Z Y
by i1(x) = (x, 0) + W and i2 : Y → X ⊕Z Y by i2(y) = (0, y) + W . The fact that i1 and i2 are
homomorphisms follows immediately. We will show that (X ⊕Z Y, i1, i2) is a fiber coproduct in the
category of abelian groups. Take an abelian group A along with homomorphisms φ1 : X → A and
φ2 : Y → A. Suppose that h′ : Z → A is a homomorphism such that the following diagram commutes
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(without taking into account the doted lines).

A

X ⊕Z Y Y

X Z

i2

φ

φ2

i1
φ1

f

g

Define φ : X ⊕Z Y → A by φ((x, y) +W ) = φ1(x) + φ2(y). If (x1, y1) +W = (x2, y2) +W , there
exists z ∈ Z such that f(z) = x2 − x1 and −g(z) = y2 − y1. So

φ1(x2 − x1) = φ1(f(z)) = φ2(g(z)) = −φ2(y2 − y1);

which implies that φ1(x1) + φ2(y1) = φ1(x2) + φ2(y2). Then φ is a well-defined map. We represented
φ using doted point in the above diagram. Since φ1 and φ2 are group homomorphisms, so is φ. We
check now that the above diagram commutes. Since for x ∈ X, φ(i1(x)) = φ(x, 0) = φ1(x), the bottom
left triangle commutes. In the same way, it can be seen that the bottom right triangle commutes.
For z ∈ Z, φ(h(z)) = φ(i1(f(z))) = φ1(f(z)). Therefore the big left vertical triangle commutes. In a
similar way, it can be checked that the big right vertical triangle commutes. Substituting h′ by φ1 ◦f ,
we can see that the same images are obtained by going down the diagram either via h′ or via φ. Hence
the above diagram commutes.

To check uniqueness of φ, suppose that ψ : X⊕Z Y → A also makes the above diagram commutes.
Then for x ∈ X and y ∈ Y ,

ψ((x, y) +W ) = ψ(i1(x) + i2(y))

= ψ(i1(x)) + ψ(i2(y))

= φ1(x) + φ2(y)

= φ((x, y) +W ).

(b) If i1(y) ∈W for some y ∈ Y , there exists z ∈ Z such that f(z) = 0 and −g(z) = y. Since f is
injective, z = 0, and so y = −g(0) = 0. Therefore the push-out i2 of f is also injective.

�

Problem 6. (Lang III.16) Prove that the inverse limit of a system of simple groups in which the
homomorphisms are surjective is either the trivial group or a simple group.

Solution: Let (Gi, f
j
i ) be a system of simple groups where for each pair j ≥ i the homomorphism

f ji is surjective. Since each Gi is simple, each f ji is either trivial or an isomorphism. Suppose that
Gi and Gj are nontrivial. Take k such that k ≥ i and k ≥ j. Since fki and fkj are isomorphisms,
Gi ≈ Gk ≈ Gj . Hence all nontrivial groups in the system are isomorphic. Let (G, fi) be the inverse

limit of (Gi, f
j
i ). Since G is a subgroup of

∏
Gj and fi : G → Gi is the restriction of the projection

πi :
∏
Gj → Gi to G, if Gi is trivial for all i then G is also trivial. So assume that there exists i such

that Gi is nontrivial. In this the case, we will show that G ≈ Gi. There is no loss in assuming that
Gj is nontrivial for all j (i.e. Gj ≈ Gi for all j). We show that fi is an isomorphism.

First let us check that fi is surjective. Take gi ∈ Gi. For any index j there exists k such that k ≥ j
and k ≥ i. Then we take gj = fkj (gk) where gk is the unique element in Gk such that fki (gk) = gi. If k′
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also satisfies that k′ ≥ j and k′ ≥ i, take m such that m ≥ k and m ≥ k′. Since fki (gk) = gi = fk
′

i (gk′),

gk and gk′ must lift to the same element gm ∈ Gm. Therefore fkj (gk) = fmj (gm) = fk
′

j (gk′), which
implies that gj does not depend on the k chosen. It follows immediately that for p ≥ q, fpq (gp) = gq.
So (gj) is actually an element in G satisfying that fi((gj)) = gi. Hence fi is surjective.

Now we show that fi is injective. Suppose that (gj) is in the kernel of fi. Then gi = 1. For any j
there exists k such that k ≥ i and k ≥ j. Since fki (gk) = gi = 1, gk = 1. Therefore gj = fkj (gk) = 1.
Then (gj) is the identity of G, which proves that fi is injective. Hence G ≈ Gi is simple.

�

2 Ring Theory

Problem 7. (Lang IV.5) Analyze irreducibility in the following cases:
(a) x6 + x3 + 1 over the rational numbers.
(b) x2 + y2 − 1 over the complex numbers.
(c) x4 + 2011x3 + 2012x2 + 2013 over the rational numbers.

Solution: (a) Let p(x) = x6 + x3 + 1. Note that the polynomial p(x) is irreducible if and only if so is
q(x) = p(x+1). The polynomial q(x) = (x+1)6 +(x+1)3 +1 = x6 +6x5 +15x4 +21x3 +18x2 +9x+3
has all its non-leading coefficients in the prime ideal (3). Since the constant coefficient of q(x) is not
in the ideal (9), by Eisenstein Criterion, q(x) is irreducible over Z. By Gauss’s Lemma, q(x) is also
irreducible in Q. Therefore the polynomial x6 + x3 + 1 is irreducible over the rationals.

(b) Consider the polynomial q(x, y) = x2 + y2 − 1 = y2 + (x2 − 1) as a polynomial in the variable
y with coefficients in C[x]. The polynomial q(x, y) is monic with non-leading coefficients in the prime
ideal (x−1) of C[x]. Since the constant coefficient x2−1 is not an element of ((x−1)2), by Eisenstein
Criterion, q(x, y) is irreducible in C[x][y] as a polynomial in the variable y with coefficients in C[x].
Hence q(x, y) is irreducible as a polynomial in two variables.

(c) Let r(x) = x4 + 2011x3 + 2012x2 + 2013. It is enough to check, by Gauss’s lemma, that
r(x) is irreducible over Z. Also, note that if r(x) reduces over Z then r̄(x) reduces over Z2, where
r̄(x) ∈ Z2[x] is the result of reducing the coefficients of r(x) module 2. Since r̄(x) = x4 + x3 + 1.
Since r̄(x) does not have any roots in Z2, should it factor in Z2[x], it would be the product of two
irreducible polynomials of degree 2. However, there is only one irreducible polynomial of degree two
in Z2[x], namely x2 + x+ 1. Since (x2 + x+ 1)2 = x4 + x2 + 1 6= r̄(x), r̄(x) must be irreducible over
Z2. Hence, r(x) is irreducible over the rationals.

�

Problem 8. (Lang II.6) Let A be a factorial ring and p be a prime element. Show that the local ring
A(p) is principal.

Solution: Let I be a proper ideal of A(p), and letM = {ab : a ∈ (p) and b /∈ (p)} be the only maximal
ideal of A(p). Since A(p) is a commutative ring with 1, any ideal is contained in a maximal ideal; in

particular, I ⊂ M. Since M = 〈p1 〉, any element of I can be written as mpk

b where m /∈ (p) and

b /∈ (p) (note that m
b is a unit). Let n0 be the minimal positive integer such that pn0

1 ∈ I. We shall

show that I = 〈p
n0

1 〉. Since I is an ideal, 〈p
n0

1 〉 ⊂ I. To show that reverse containment, take mpk

b ∈ I.
By the minimality of n0, k ≥ n0 and, therefore,

mpk

b
=
mpk−n0

b
· p

n0

1
∈ 〈p

n0

1
〉.

Hence every ideal of A(p) is principal.
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�

Problem 9. Let F be a field. Show that F[[x]] is factorial.

Solution: Let R = F[[x]]. We will prove that R is a principal ideal domain, which is, in fact, a stronger
statement. Let a =

∑
anx

n be an element of R. There exists b =
∑
bnx

n such that ab = ba = 1 if
and only if a0 6= 0. To see this we take b0 = a−1

0 , and once we have chosen b0, . . . , bn−1 in F, we take
bn ∈ F such that a0bn + · · ·+ anb0 = 0. Therefore a0 6= 0 implies that a is a unit. Hence M = (x) is
the only maximal ideal of R. Since R is a commutative ring with 1, every ideal must be contained in
a maximal ideal. This implies that each nonzero ideal of R is of the form (xi) for some i ≥ 0. Hence
R is a principal ring (PID) and, therefore, a factorial ring (UFD).

�

Problem 10. Let F be a field. Show that the ring of Laurent polynomials is principal.

Solution: Let R = F [x, 1/x] be the ring of Laurent polynomials over F . For f(x) =
∑n
i=−k aix

i ∈ R
with a−k 6= 0, we define indeg(f) to be k if k > 0 and zero otherwise. Now suppose that Ī is an ideal
of R. Consider the ideal I generated by the set S = {xindeg(r)r(x) : r(x) ∈ Ī}. Since I is an ideal of
F [x], which is a principal ring (PID), I = (g(x)). We show that Ī = (g(x)) where ((g(x)) is considered
an ideal of R. Take an arbitrary element a(x) ∈ Ī. Then we have that xindeg(a)a(x) ∈ I, and so there
exists b(x) ∈ R such that a(x) = x−indeg(a)b(x)g(x) ∈ (g(x)). On the other hand, every element of S
belongs to Ī; this is because Ī is an ideal. Therefore (g(x)) = (S) ⊂ Ī. Hence Ī = (g(x)) is principal,
and this implies, in turn, that R is a principal ring.

�

Problem 11. (Lang III.17) Let n range over the positive integers and let p be a prime number. Show
that the abelian groups An ≈ Z/pnZ form an inverse system under the canonical homomorphisms if
n ≥ m. Let Zp be its inverse limit. Show that Zp maps surjectively on each Z/pnZ; that Zp has no
divisor of 0, and has a unique maximal ideal generated by p. Show that Zp is factorial, with only one
prime, namely p itself.

Solution: The set of natural numbers is a special case of directed system of indices. If n ≥ m then
pnZ ⊆ pmZ and so qnm : Z/pnZ→ Z/pmZ given by a+ pnZ 7→ a+ pmZ where a ∈ Z is a well-defined
surjective homomorphism. Also if n ≥ m ≥ k,

(qmk ◦ qnm)(a+ pnZ) = qmk (a+ pmZ) = a+ pkZ = qnk (a+ pnZ).

Hence (An, q
n
m) is an inverse system.

Denote by fj the homomorphism from Zp to Aj . Fix the index i and take ai ∈ Ai. Define ai+j
such that qi+ji+j−1(ai+j) = ai+j−1 recursively starting at j = 1. Also define aj = qij(ai) for i ≥ j.

It follows that qts(at) = as for any t ≥ s, which implies that (aj) ∈ Zp. Since fi((aj)) = ai, fi is
surjective.

To check that Ap does not contain any zero divisors, take (aj + pjZ) and (bj + pjZ) in Zp whose
product is zero. Suppose, by way of contradiction, that there exist r and s such that pr does not
divide ar and ps does not divide bs. Therefore neither pr divides ar+s nor ps divides br+s. Then pr+s

does not divide ar+sbr+s, which means that ar+sbr+s + pr+sZ is nonzero. But this contradicts that
the product of (aj + pjZ) and (bj + pjZ) is zero. Hence either (aj + pjZ) or (bj + pjZ) must be zero.
Therefore Zp has no zero divisors.

To prove that the ideal M generated by p is the unique maximal ideal of Zp, take an element
(aj + pjZ) in Zp which is not in M. Then p does not divide aj , which implies that (aj , p

j) = 1.



Groups, Rings, and Fields Felix Gotti

Take, for each j, bj such that ajbj = 1 in Z/pjZ. Since pj divides both aj+1bj+1 − 1 and ajbj − 1,
and aj+1 ≡ aj (mod pj), we have that pj divides aj(bj+1 − bj). Therefore pj divides bj+1 − bj , which

implies that qj+1
j (bj+1 + pj+1Z) = bj + pjZ. Hence (bj + pjZ) is the inverse of (aj + pjZ) in Zp. Since

any element outside M is a unit, M is the unique maximal ideal of Zp. Thus Zp is a local ring.
Since Zp is a commutative ring with identity, any ideal is contained in a maximal ideal. On the

other hand, M is the unique maximal ideal of Zp, so any ideal is contained in M. This implies that
every ideal of Zp is principal. Hence Zp is a principal ring (PID). In particular, Zp is a factorial ring
(UFD). Since M is a prime ideal, p is prime in Zp. Suppose that q is a prime. Then the ideal (q) is
contained in M. Hence q = upk where u is a unit. Since q is irreducible, k = 1, which implies that q
is associate with p. Hence p is the unique prime in Zp.

�

Problem 12. Let ω be a root of x2 − x+ 1. Show that Z[ω] is an Euclidean domain.

Solution: Let R = Z[ω]. Since x6 − 1 = (x3 − 1)(x+ 1)(x2 − x+ 1), we have that ω is a sixth root of
unity; in fact, a primitive sixth root of unity. We can assume, without loss of generality, that ω is the
principal sixth root of unity. Therefore, R consists of all intersections of the following lines:

(i) lines parallel to the real axis intersecting the imaginary axis at ib
√

3
2 where b ∈ Z;

(ii) lines whose slopes equal
√

3 intersecting the imaginary axis at ib
√

3 where b ∈ Z;
(ii) lines whose slopes equal −

√
3 intersecting the imaginary axis at ib

√
3 where b ∈ Z.

Therefore the points of R form a grid in C consisting of unit-side equilateral triangles. This implies

that for any z ∈ C there exists p ∈ R such that |z − p| ≤
√

3
3 . Therefore, for a, b ∈ R such that b 6= 0,

there exists q ∈ R such that |a/b− q| ≤
√

3
3 . Taking r = a− qb, we have that

|r| = |a− qb| = |a/b− q||b| ≤
√

3

3
|b| < |b|.

Therefore a = qb+ r where |r| < |b|. Hence R is an Euclidean domain.
�

Problem 13. Let R be a semisimple ring, L ⊂ R be a left ideal. Prove that L = Re for some
idempotent e.

Solution: Consider L as a left R-submodule of R. Since R is semisimple as a module over itself, there
exists a left R-submodule L′ of R such that R = L⊕L′. Take e ∈ L and e′ ∈ L′ such that 1 = e+ e′.
Then we have that

e+ 0 = e = e(e+ e′) = e2 + ee′.

Since R is the direct sum of L and L′, it follows that e = e2 and 0 = ee′. So e is an idempotent
element in R. Since L is a left R-submodule and e ∈ L, we have that Re ⊂ L. Now if l ∈ L,

l + 0 = l = l(e+ e′) = le+ le′.

Consequently l = le and 0 = le′. Since l = le ∈ Re, we conclude that L = Re.
�

Problem 14. Determine up to isomorphism all semisimple rings of order 1008. How many of them
are commutative?
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Solution: Let R be a semisimple ring of order 1008 = 24 ∗ 32 ∗ 7. Since R is finite, it is Artinian.
Therefore, by Artin-Wedderburn theorem, R is the product of finitely many ni × ni matrix rings
over division rings Ri. Since R is finite, so is Ri for each index i. So each Ri must be a field. The
possible products of matrix rings with entries in a field of characteristic 2 are M2(F2), F16, F4 × F4,
F4 × F2 × F2, and F2 × F2 × F2 × F2. Using fields of characteristic 3, instead of characteristic 2, the
possible products of matrix rings are F9 and F3 × F3. In characteristic 7 there is only one of such
products, namely F7. Combining the products we have obtained before, we obtain a representative
for each isomorphism class of semisimple rings of order 1008. There are 10 isomorphism classes. Only
the representatives containing as a factor an n × n matrix ring where n > 1 are not commutative.
Hence, up to isomorphism, there are eight commutative semisimple rings of order 1008.

�

3 Module Theory

Problem 15. Let P be a cyclic projective module over an arbitrary ring R. Prove that P ≈ Re for
some idempotent e of R.

Solution: Since P is cyclic, there exists x ∈ P such that P = Rx. Define gx : R→ Rx by gx(r) = rx.
It is easy to check that gx is an R-module homomorphism. Also notice that ker(gx) = Ann(x).
Therefore, we have the following short exact sequence

0→ Ann(x)
i→ R

gx→ Rx → 0.

Since Rx is projective, there exists a homomorphism f : Rx→ R such that gx ◦f = 1Rx. This implies
that f(x)x = x. Define e ∈ R to be f(x), and observe that (e − 1)x = 0. So e − 1 = Ann(x). For
a ∈ Ann(x) such that 1 = e+ a, we have

e = (e+ a)e = e2 + ae = e2 + af(x) = e2 + f(ax) = e2 + f(0) = e2.

Hence e is an idempotent element. Since gx ◦ f = 1Rx, the map f is injective. Therefore Re ≈ Rx,
being Re the image of Rx by f .

�

Problem 16. (Lang III.10) (a) Let A be a commutative ring with identity. If p is a prime ideal, and
S = A− p is the complement of p in the ring A, then S−1M is denoted by Mp. Show that the natural
map

M →
∏

Mp

of a module M into the direct product of all localizations Mp where p ranges over all maximal ideals,
is injective.
(b) Show that the sequence 0→ M ′ → M → M ′′ → 0 is exact if and only if the sequence 0→ M ′p →
Mp →M ′′p → 0 is exact for all prime p.
(c) Let A be an entire ring and let M be a torsion-free A-module. For each prime p of A show that
the natural map M → Mp is injective, but you can see that directly from the imbedding of A in its
quotient field K.

Solution: (a) Let A be the annihilator of M . Since A is a commutative ring with identity, A is a
nontrivial proper ideal of A. Also, there exists a maximal idealM containing A. Denote M →

∏
Mp

by φ. If m ∈ ker(φ), the projection of m in the factor corresponding to p =M is trivial, which means
that m

1 = 0
s for some s /∈M. Therefore sm = 0. Since s /∈ A, we have m = 0. Hence φ is injective.
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(b) If the sequence 0→M ′
f→M

g→M ′′ → 0 is exact, for all prime ideal p, the sequence

0→M ′p
f̄→Mp

ḡ→M ′′p → 0 (1)

is also exact. Conversely, suppose that the sequence (1) is exact for all prime ideals p of A. We will

show that the sequence 0 → M ′
f→ M

g→ M ′′ → 0 is also exact. Suppose that f(m′) = 0 for some

m′ ∈M ′. Then f̄(m
′

1 ) = f(m′)
1 = 0

sp
in Mp for any prime ideal p. Since f̄ is injective, m

′

1 = 0 in each

Mp. By part (a), m′ = 0. Therefore f is injective. Now we show that g is surjective. Suppose, on
the contrary, that there exists m′′ ∈ M ′′ − g(M). Note that A := Ann(m′′ + g(M)) in M ′′/g(M) is
not trivial. LetM be a maximal ideal containing A. Since ḡ is surjective, there exists m

s ∈MM such

that ḡ(ms ) = g(m)
s = m′′

1 . So sm′′ = g(m) ∈ g(M), which means that s ∈ A. But this contradicts that
s ∈ M. Hence g is surjective. Finally, we show that Im(f) = ker(g). Take m ∈ Im(f) and m′ ∈ M ′
such that f(m′) = m. It follows that

m

1
=
f(m′)

1
= f̄

(m′
1

)
∈ Im(f̄) = ker(ḡ).

Therefore g(m)
1 = 0

s in M ′′p for some s ∈ A − p for every prime ideal p. The injectivity of φ in part
(a) implies that g(m) = 0 and so Im(f) ⊆ ker(g). Take now m ∈ ker(g) and suppose, by way of
contradiction, that m /∈ Im(f). Then m ∈ M − f(M ′). Since 1m /∈ f(M ′), A := Ann(m + f(M ′))
is a proper ideal of A. Let M be a maximal ideal containing A. Since m

1 ∈ ker(ḡ) = Im(f̄), there

exists m′

s ∈ M
′
M such that f̄(m

′

s ) = f(m′)
s = m

1 . Because sm = f(m′) ∈ f(M ′), s ∈ A. But this is a
contradiction because s ∈M. Therefore Im(f) ⊆ ker(g), giving the desired result.

(c) Let ψ : M → Mp be the homomorphism given by ψ(m) = m
1 . If ψ(m) = 0, we have that

m
1 = 0

s for some s ∈ A − p. Since s /∈ p, we have that s 6= 0. The facts that M is torsion free and
s 6= 0 imply that m = 0. Hence ψ is injective.

�

Problem 17. Let R be a principal ring. Show that any projective R-module is free.

Solution: Suppose that M is a projective module over R. Since M is projective, it is the direct sum-
mand of a free R-module, namely F . The R-module F is torsion-free because it is free. This implies
that M is also torsion-free. Since R is a principal ring (PID), by the classification theorem of modules
over PID, M ≈ RI ⊕ T where RI is free and T is torsion. Since M is torsion-free, T is trivial. Hence
M is free. �

Problem 18. Show that a finitely generated projective module over a local ring is free.

Solution: Let R be a local ring and M be a finitely generated projective R-module. Take the smallest
n such that M = Rm1 + · · · + Rmn for some mi ∈ M . Since Rn is free, there exists an R-module
homomorphism φ : Rm →M inducing the following short exact sequence,

0→ K → Rm
φ→M → 0,

where K is the kernel of φ. Since M is projective, the above sequence splits and then M ⊕K ≈ Rm.
Let M be the maximal ideal of R. Tensoring M ⊕ K ≈ Rm with R/M, we see that (R/M)n ≈
M/MM ⊕K/MK as vector spaces over the field R/M. The elements m̄1, . . . , m̄n generate M/MM
where m̄i = mi +MM . Suppose now that

∑
i r̄im̄i = 0 for some r̄i ∈ R/M. This implies that∑

i rimi ∈ MM , and so that ri ∈ M for all i. Therefore the elements m1, . . . ,mn are linearly
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independent in M/MM , and so a basis. Hence dimM/MM = n, which implies that N/MN is
trivial. Since N = MN and R is a local ring with maximal ideal M, Nakayama’s Lemma implies
that N = 0. Therefore M = Rn is a free R-module.

�

Problem 19. (Lang III.19) Let (Ai, f
i
j) be a directed family of modules. Let ak ∈ Ak for some k,

and suppose that the image of ak in the direct limit A is 0. Show that there exists some index m ≥ k
such that fkm(ak) = 0. In other words, whether some element in some group Ai vanishes in the direct
limit can already be seen within the original data.

Solution: For the index i, let fi : Ai → A be the map given by the direct limit. Let S = ⊕iAi and,
for xi ∈ Ai, denote by x̄i the element in the direct sum having xi in the i-th component and zeroes
elsewhere. Let N be the subgroup of S generated by the elements (. . . , 0, x, . . . ,−f ij(x), 0, . . . ) with

x ∈ Ai and −f ij(x) ∈ Aj for i ≤ j. The fact that fk(ak) = 0 implies that āk ∈ N . Then we can write
āk as

(. . . , 0, ai1 , . . . ,−f
i1
j1

(ai1), 0, . . . ) · · · (. . . , 0, air , . . . ,−f
ir
jr

(air ), 0, . . .)

for some r ≥ 1, where it ≤ jt for 1 ≤ t ≤ r. Although the indices it and jt above can be spread
over different components, the addition in the component s is zero when s 6= k and ak when s = k.
Therefore, for m ≥ max{k, j1, . . . , jr} (which must exist),

fkm(ak) = (f i1m (ai1)− f j1m (f i1j1 (ai1))) + · · ·+ (f irm (air )− f jrm (f irjr (air )))

= (f i1m (ai1)− f i1m (ai1)) + · · ·+ (f irm (air )− f irm (air ))

= 0.

Then m is the index we were looking for.
�

Problem 20. (Lang III.24) Show that any module is a direct limit of finitely generated submodule.

Solution: Let R be a ring and M be an R-module. For any finite subset S of M , denote by MS the
finite submodule of M generated by S. The finite subsets of M form a directed system of indices. For
S and T finite subsets of M such that S ⊂ T , we denote by iS,T the inclusion from MS to MT . The
family (MS , iS,T ) is a directed system of finitely generated R-modules. We show that (M, iS) where
iS : MS → M is the inclusion is the direct limit of the family (MS , iS,T ). For S ⊂ T , iT ◦ iS,T = iS .
Consider (N, fS) where N is an R-module and, for each finite subset S of M , fS : MS → N is an R-
module such that fT ◦ iS,T = fS . Define φ : M → N as follows. For m ∈M , we set φ(m) = f{m}(m).
If S is a finite subset of M containing m, fS(m) = f{m}(m). Therefore, if a, b ∈ M and α ∈ R,
φ(αa + b) = f〈a,b〉(αa + b) = αf〈a〉 + f〈b〉 = αφ(a) + φ(b). Therefore φ is a homomorphism. Also for
a finite subset S of M and m ∈ MS , φ(iS(m)) = φ(m) = f〈m〉(m) = fS(m). Hence M is the direct
limit of its finitely generated submodules.

�

Problem 21. (Lang III.21) Let (M ′i , f
i
j), (Mi, g

i
j) be directed systems of modules over a ring. By a

homomorphism
(M ′i)

u→ (Mi)

one means a family of homomorphisms ui : M ′i → Mi for each i which commute with the f ij , g
i
j.

Suppose we are given an exact sequence

0→ (M ′i)
u→ (Mi)

v→ (M ′′i )→ 0
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of directed systems, meaning that for each i, the sequence

0→M ′i →Mi →M ′′i → 0

is exact. Show that the direct limit preserves exactness, that is

0→ lim−→M ′i → lim−→Mi → lim−→M ′′i → 0

is exact.

Solution: Denote by M ′, M , and M ′′ the direct limits lim−→M ′i , lim−→Mi, and lim−→M ′′i respectively, where

(M ′′i , h
i
j) is a directed system of modules with vi : Mi →M ′′i commuting with the gij , h

i
j . It is enough

to show that the sequence M ′ → M → M ′′ is exact at M since exactness at M ′ and M ′′ follows
similarly by considering the sequences 0→M ′ →M and M →M ′′ → 0.

We will show that ker(v) = Im(u). For each m′ ∈ M ′, there exists i and m′i ∈ M ′i such that
m′ = fi(m

′
i). Considering the following commutative diagram

0 −−−−→ M ′i
ui−−−−→ Mi

vi−−−−→ M ′′i −−−−→ 0

fi

y gi

y hi

y
0 −−−−→ M ′

u−−−−→ M
v−−−−→ M ′′ −−−−→ 0,

we obtain that

v(u(m′)) = v(u(fi(m
′
i))) = v(gi(ui(m

′
i))) = (v ◦ gi)(ui(m′i)) = hi(vi(ui(m

′
i))) = hi(0) = 0;

this is because vi ◦ ui is trivial. Therefore Im(u) ⊆ ker(v). To show the reverse inclusion, take
m ∈ ker(v). Then take i and mi ∈Mi such that m = gi(mi). Since hi(vi(mi)) = v(gi(mi)) = 0, there
exists j ≥ i such that hij(vi(mi)) = 0. Hence vj(g

i
j(mi)) = 0. Since gij(mi) ∈ ker(vj) = Im(uj), there

exists m′j ∈M ′j such that uj(m
′
j) = gij(mi). Taking m′ = fj(m

′
j) ∈M ′,

u(m′) = u(fj(m
′
j)) = gj(uj(m

′
j)) = gj(g

i
j(mi)) = gi(mi) = m.

Therefore ker(v) ⊆ Im(u), which implies that the sequence M ′ →M →M ′′ is exact at M .
�

Problem 22. (Lang III.23) Let (Mi) be a directed family of modules over a ring. For any module N
show that

lim←−Hom(N,Mi) = Hom(N, lim←−Mi).

Solution: For i ≤ j denote by fji : Mj → Mi the homomorphisms in the directed family of modules
(Mi), and denote by M its inverse limit. For i ≤ j denote by f̄ji : Hom(N,Mj) → Hom(N,Mi)
the homomorphism given by f̄ji(φ)(x) = fji(φ(x)) for φ ∈ Hom(N,Mj) and x ∈ N . Since (Mi)
is a directed family of modules, so is (Hom(N,Mi), f̄ji). Denote by f̄i the homomorphism from
Hom(N,M) to Hom(N,Mi) given by f̄i(φ)(x) = fi(φ(x)). We only need to show that (Hom(N,M), f̄i)
is the inverse limit of the directed family of modules (Hom(N,Mi), f̄ji).

If φ ∈ Hom(N,M) and x ∈ N , we have that

(f̄ji(f̄j(φ)))(x) = fji(f̄j(φ)(x)) = fji(fj(φ(x))) = fi(φ(x)) = f̄i(φ)(x),

for any i ≤ j. Therefore f̄ji ◦ f̄j = f̄i for i ≤ j (i.e. the upper triangle in the diagram given below
commutes). Now suppose that (A,αi) where αi : A→ Hom(N,Mi) satisfies that f̄ji ◦αj = αi. Define
α : A→ Hom(N,M) by α(a)(x) = (αi(a)(x)) for a ∈ A and x ∈ N . If i ≤ j fji(αj(a)(x)) = αi(a)(x)
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for each a ∈ A and x ∈ N . Therefore (αi(a)(x)) ∈ M for each a ∈ A and x ∈ N , which implies that
α(a) : N → M is a well-defined map. The map α is represented with dotted points in the following
diagram,

Hom(N,Mj) Hom(N,Mi)

Hom(N,M)

A

f̄ji

f̄j f̄i

α

αj αi

For a ∈ A the map αi(a) is a homomorphism for each i, so the map α(a) is also a homomorphism.
Then we have that α is well defined. The fact that α is a module homomorphism follows from the
fact that αi is a module homomorphism for each index i. Finally, for any index i and a ∈ A,

f̄i(α(a))(x) = fi(α(a)(x)) = fi((αj(a)(x))) = αi(a)(x),

for all x ∈ N . Therefore f̄i ◦ α = αi for all index i (i.e. α respects the commutativity of the above
diagram). Hence (Hom(N,M), f̄i) is the inverse limit of (Hom(N,Mi), f̄ji).

�

4 Field Theory

Problem 23. (Lang V.13) If the roots of a monic polynomial f(x) ∈ k(x) in some splitting field are
distinct, and form a field, then char(k) = p and f(x) = xp

m − x for some m ≥ 1.

Solution: Let F = {r1, . . . , rn} be the set of roots of f . Since F is a field, k ∗ 1 is a root of f for
any k ∈ N. Since a polynomial has only finitely many roots, char(k) = p. Since f splits over F ,
namely f(x) = (x − r1) · · · (x − rn), and F is trivially generated by the roots of f , F must be the
splitting field of f . Let Fp be the prime field of F . Since F is a finite dimensional vector space over
Fp, n = |F | = pm. We also know that the finite field of order pm is the splitting field of the polynomial
xp

m − x. Therefore f(x) = xp
m − x.

�

Problem 24. (Lang V.14) Let char(K) = p. Let L be a finite extension of K, and suppose that
[L : K] prime to p. Show that L is separable over K.

Solution: Take and element a in L. Since [L : K] is finite, a is algebraic. Let f(x) ∈ K[x] be the
irreducible polynomial of a over K. Since m = deg f divides n = [L : K], we have that (m, p) = 1. Let

fsep be a separable polynomial in K[x] such that f(x) = fsep(x
pt) where t is a non-negative integer.

This implies that m = deg f = pt deg fsep, and so pt divides m. The fact that (m, p) = 1 forces t to
be zero. Hence f = fsep is separable over K.

�

Problem 25. (Lang V.15) Suppose that char(K) = p. Let a ∈ K. If a has no p-th roots in K, show
that xp

n − a is irreducible in K[x] for all positive integer n.
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Solution: Let n be a positive integer and f(x) = xp
n − a. If β1 and β2 are roots of f in some splitting

field, then we have that (β1 − β2)p
n

= βp
n

1 − β
pn

2 = a − a = 0, and so β1 = β2. Hence f is purely
inseparable, and so there exists β in some splitting field F of f over K such that f(x) = (x− β)p

n

=

xp
n−βpn . If g is the irreducible polynomial of β over K, g(x) = (x−β)p

k

in F for some k. The degree
of g is a power of p because g is irreducible and purely inseparable. Since g divides f in K[x] we have
that k ≤ n. If k = n then f(x) = g(x), and so f is irreducible. Assume, by way of contradiction, that

k < n. Note that βp
k

is a coefficient of g, so βp
k ∈ K. If α = βp

n−1

we have that α = (βp
k

)p
n−k−1 ∈ K.

Then we have that a = αp for some α ∈ K. This contradicts the fact that a has no p-th roots in K.
�

Problem 26. (Lang V.16) Let char(K) = p. Let α be algebraic over K. Show that α is separable if
and only if K(α) = K(αp

n

) for all positive integer n.

Solution: First, let us assume that α is separable. Given that K(αp
n

) ⊂ K(α), it is enough to prove
that α ∈ K(αp

n

). Since α is a root of f(x) = xp
n −αpn ∈ K(αp

n

)[x], the irreducible polynomial g(x)
of α over K(αp

n

) divides f(x). Therefore, g(x) = (x − α)m in K(αp
n

)[x]. If a(x) is the irreducible
polynomial of α over K, then g(x) divides a(x) in K(αp

n

)[x]. Since a(x) is separable, m = 1. Hence
α ∈ K(αp

n

).
On the other hand, assume that K(α) = K(αp

n

) for all positive integer n. Let a(x) be the
irreducible polynomial of α over K. There exists a separable polynomial asep(x) ∈ K[x] and a non-

negative k such that a(x) = asep(x
pk). Because α is a root of a(x), the element αp

k

is a root of
asep(x). The fact that a(x) is irreducible implies that asep(x) is also irreducible. Therefore asep(x) is

the irreducible polynomial of αp
k

. It follows that

deg asep(x) = [K(αp
k

) : K] = [K(α) : K] = deg a(x).

This implies that k = 0, and so a(x) = asep(x). Hence a(x) is separable.
�

Problem 27. (Lang V.18) Show that every element of a finite field can be written as a sum of two
squares in that field.

Solution: Let F be a finite field. If char(F ) = 2 then the Frobenius homomorphism is surjective, and
so for any y ∈ F there exists x ∈ F such that y = x2 = x2 + 02. Suppose now that char(F ) = p is
an odd prime. Then |F | is odd, and so |F×| = 2k for some natural k. In addition, F× is cyclic; let
F× = 〈a〉. Note that every even power of a is a square. Since 0 is also a square in F , at least k + 1
elements of F are squares. Let S be the set of all squares in F . For an arbitrary element y ∈ F , the
following inequality holds,

|y − S| = |S| = k + 1 ≥ |F |
2
.

By the Pigeonhole Principle, there exists s ∈ (y − S) ∩ S, which means that s = s2
1 for some s1 ∈ F

and s = y − s2
2 for some s2 ∈ F . Hence y = s2

1 + s2
2.

�

Problem 28. (Lang V.24) Show that the primitive element theorem may not hold for a finite non-
separable extension.

Solution: Let F = Zp(Y,Z) where Y and Z are two algebraically independent transcendental elements
over Zp, and let F a be an algebraic closure of F . Consider the polynomials p(x) = xp − Y and
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q(x) = xp − Z in F [x]. Since p(x) and q(x) are Eisenstein with respect to the prime ideals (Y ) and
(Z), both polynomials are irreducible in Zp[Y, Z]. By Gauss Lemma, they are also irreducible over
F . Let α and β be respective roots of p(x) and q(x) in F a. Consider the field extension F (α, β)/F .
Since q(x) = (x−β)p in F a, if q(x) reduced in F (α), we would have that βi ∈ F (α) for some i, and so
βi =

∑
cjα

j for some cj ∈ F . But this would imply that Zi =
∑
cpjY

j , which cannot happen because
Y and Z are algebraically independent. Therefore q(x) is irreducible over F (α). This implies that

[F (α, β) : F ] = [F (α)(β) : F (α)][F (α) : F ] = p2.

Now for γ ∈ F (α, β) there are cij ∈ F such that γ =
∑
ij cijα

iβj . Thus

γp =
∑
ij

cpij(α
i)p(βj)p =

∑
ij

cpijY
iZj ∈ F.

Hence [F (γ) : F ] ≤ p, which implies that F (α, β) cannot be a simple extension of F .
�

Problem 29. (Hungerford V.5.9) If n ≥ 3, show that x2n

+ x+ 1 is reducible over F2.

Solution: Let p(x) = x2n

+ x+ 1. Suppose, by way of contradiction, that p(x) is irreducible. Let r be
a root of p(x) in some splitting field F . Then [F2(r) : F2] = n. This implies that F2(r) = F2n . Also
we know that F2n is the splitting field of the polynomial q(x) = x2n − x ∈ F2[x]. Notice that for any
a ∈ F2n

p(r + a) = (r + a)2n

+ (r + a) + 1 = (r2n

+ r + 1) + (a2n

− a) = 0.

Therefore r + a is a root of p(x) for each a ∈ F2n . Since r + F2n = F2n , any element in F2n is a root
of p(x). In particular, 0 = p(0) = 1, which is a contradiction. Hence p(x) is irreducible.

�

Problem 30. (Hungerford V.5.12) Let p be prime. Show that for any n > 0, there exists an irreducible
polynomial in Fp[x] of degree n.

Solution: We know that there exists, up to isomorphism, a unique field of order pn. Denote this field
by F . Let F× be the multiplicative subgroup of units of F . Since F is a vector space over Fp, and
|F | = pn, it follows that [F : Fp] = n. Since F× is finite, it must be cyclic. Therefore there exists
a ∈ F× such that F× = 〈a〉. Hence, F = Fp(a). Let f(x) be the irreducible polynomial of a. Then
deg f = [Fp(a) : Fp] = n. Therefore f(x) is an irreducible polynomial of degree n.

�

5 Galois Theory

Problem 31. (Lang VI.11) A polynomial f(x) is said to be reciprocal if whenever α is a root, then
1/α is also a root. We suppose that f has coefficient in a real subfield k of the complex numbers. If
f is irreducible over k, and has a nonreal root of absolute value 1, show that f is reciprocal of even
degree.

Solution: Let β be a nonreal root of f(x) with absolute value 1, and let α be an arbitrary root of
f(x). Denote by K the splitting field of f(x) inside C, and denote by G the Galois group of the field
extension K/k. Since f(x) is irreducible over k, G acts transitively on the roots of f(x). Then there
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exists σ ∈ G such that σ(β) = α. This implies that σ(β̄) = σ(1/β) = 1/σ(β) = α−1. Since β̄ is a root
of f(x) so is α−1; this is because σ permutes the roots of f(x). Hence f(x) is reciprocal.

Since f(x) is an irreducible polynomial over a field of characteristic zero, it is separable. We know
that the nonreal roots of f(x) come in pairs. Since f(x) is reciprocal, the real roots also come in pairs.
Therefore f(x) has an even number of roots in K. Hence the degree of f(x) is even.

�

Problem 32. (Lang VI.12) Find the Galois group of x5 − 4x+ 2 over the rationals.

Solution: (a) Let p(x) = x5− 4x+ 2 and G be the Galois group of p(x). We think of G as a subgroup
of S5. By Eisenstein Criterion, the polynomial p(x) is irreducible over Z. Gauss Lemma then implies
that p(x) is irreducible over the rationals. Hence G contains a cycle of length 5. Since p′(x) = 5x4− 4
has only two real roots, p(x) has at most three real roots. Given that p(−∞) = −∞, p(0) = 2,
p(1) = −1, and p(∞) = ∞, p(x) has exactly three real roots. Since p(x) has only two nonreal roots,
which are conjugates, the conjugation automorphism represent a transposition in G. Since G ≤ S5

contains a 5-cycle and a transposition, G = S5.

Problem 33. (Lang VI 13) Find the Galois group of x4 + 2x2 + x+ 3 over the rationals.

Solution: Let p(x) = x4 + 2x2 + x+ 3. Reducing mod 2, we have that p(x) = x4 + x+ 1. Since p(x)
does not have any roots in Z2, if it were irreducible it would have to factor as the product of two
irreducible polynomials of degree 2 each. However, the only irreducible polynomial of degree 2 over
Z2 is X2 +X + 1, and (x2 +x+ 1)2 = x4 +x2 + 1 6= p(x). Therefore p(x) is irreducible over Z2. Since
every finite extension of a finite field is cyclic, the Galois group of p(x) over Z2 contains an element
of order 4. Therefore G contains an element of order 4.

Reducing now mod 3, we have that p(x) = x(x3 + 2x + 1). Since x3 + 2x + 1 does not have any
root in Z3, it is irreducible over Z3. Therefore the Galois group of p(x) over Z3 contains an element
of order 3. Then G contains an element of order 3.

Since G contains an element of order 3 and an element of order 4, |G| is divisible by 12. The fact
that G is isomorphic to a subgroup of S4 implies that G is isomorphic to either A4 or S4. Since A4

does not contain any element of order 4, G must be isomorphic to S4.

�

Problem 34. Find the Galois group of the polynomial x5 − 5 over Q.

Solution: Let p(x) = x5 − 5. By Eisenstein Criterion and Gauss Lemma, p(x) is irreducible over
Q. Let α = 5

√
5 and ω be a primitive 5th-root of unity. Then the splitting field of p(x) over Q is

F = Q(α, ω); this is because the roots of p(x) are given by ωiα where 1 ≤ i ≤ 5. Since α is a root of
p(x), which is irreducible over Q, we have that [Q(α) : Q] = 5. On the other hand, [Q(ω) : Q] = 4
since the irreducible polynomial of ω is the cyclotomic polynomial x4 +x3 +x2 +x+1. Since (4, 5) = 1,
[F : Q] = [Q(α) : Q][Q(ω) : Q] = 20. Therefore the Galois group G = Gal(F/Q) of p(x) has order 20.

By Problem 1, S5 does not contain any abelian subgroup of order 20. Hence G is not abelian. By
Problem 4, G must be isomorphic to the dihedral of order 20 or to one of the two non-isomorphic
semidirect products Z5 oφ Z4.

�

Problem 35. (Lang VI.14) Prove that given a symmetric group Sn, there exists a polynomial f(x) ∈
Z[x] with leading coefficient 1 whose Galois group over Q is Sn.
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Solution: We saw in Problem 30 that for any prime p and any n ∈ N there exists an irreducible
polynomial g(x) ∈ Fp[x] of degree n. Take an irreducible polynomial p2(x) ∈ F2[x] of degree n. Also
take an irreducible polynomial p3(x) ∈ F3[x] of degree n− 1. Finally, take an irreducible polynomial
p5(x) ∈ F5[x] of degree 2. By the Chinese remainder theorem, there exists a polynomial f(x) ∈ Z[x]
such that

f(x) = p2(x) (mod 2) (2)

f(x) = xp3(x) (mod 3) (3)

f(x) = q(x)p5(x) (mod 5) (4)

where q(x) is the product of irreducible polynomials of odd degree chosen conveniently. Let G be
the Galois group of f(x) over the rationals seen as a subgroup of Sn. First equality implies that
G contains an n-cycle; therefore, G is a transitive subgroup of Sn. The second and third equalities
guarantees respectively the existence of an (n− 1)-cycle and a transposition in G. As we have seen in
previous problem, if a transitive subgroup of Sn contains an (n− 1)-cycle and a transposition it has
to be the full group. Hence, G ≈ Sn.

�

Problem 36. (Lang VI.23) Prove the following statements.
(a) Let G be an abelian group. There exists an abelian extension of Q whose Galois group is G.
(b) Let k be a finite extension of Q, and G 6= {1} a finite abelian group. There exist infinitely many
abelian extensions of k whose Galois group is G.

Solution: (a) By the fundamental theorem of finitely generated abelian groups, we have that G ≈
Zn1 × · · · × Znk

, where n1, . . . , nk ∈ N. By Dirichlet theorem, for i ∈ {1, . . . , k}, there are infinitely
many primes p, such that p − 1 ∈ (ni). Then we can take distinct primes p1, . . . , pk such that
pi − 1 ∈ (ni). Since (pi) and (pj) are comaximal for i 6= j, if n = p1 · · · pk, by the Chinese remainder
theorem, Zn ≈ Zp1 × · · · × Zpk . This, in turn, implies that

(Zn)× ≈ (Zp1)× × · · · × (Zpk)×.

Therefore, we have that (Zn)× ≈ Zp1−1 × · · · × Zpk−1.
Now if ζ is a primitive n-th root of unity,

H = Gal(Q(ζ)/Q) ≈ (Zn)× ≈ Zp1−1 × · · · × Zpk−1.

Notice that H has a subgroup N = N1 × · · · × Nk where Ni is a cyclic subgroup of Zpi−1 of order
pi−1
ni

. Since N is abelian, N is a normal subgroup of H. Let F be the fixed field of N in the Galois
extension Q(ζ)/Q. Then, by the Galois correspondence theorem, F/Q is Galois with Galois group
given by H/N . Since Zpi−1/Ni ≈ Zni

, we have that H/N ≈ Zn1
× · · · × Znk

= G. Thus we obtain
the desired result.

(b) By Dirichlet theorem, there are infinitely many primes p such that p− 1 ∈ (ni). Therefore we
can create a family F = {Si : i ∈ N} with Si = {pi1, . . . , pik} such that the pij ’s are prime satisfying
pij − 1 ∈ (nj) and Sr ∩ St is empty for r 6= t. Define ci = Πk

j=1pij for all i ∈ N. Now consider the

extensions Q(ζi) of Q where ζi is a primitive cthi -root of unity. Since (cr, ct) = 1 for r 6= t, we have
that Q(ζi) ∩Q(ζj) = Q. For each i we generate, similarly as we did in part (a), an intermediate field
Fi whose Galois group is G. Since [k : Q] < ∞ and Q(ζi) ∩ Q(ζj) = Q for all i 6= j, there are at
most finitely many i’s such that Q(ζi) ∩ k strictly contains Q. Therefore, for the infinitely many i’s
satisfying Fi ∩ k = Q,

Gal(kFi/k) ≈ Gal(Fi/Q) ≈ G.
�
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Problem 37. (Lang VI.24) Prove that there are infinitely many non-zero relative prime integers a, b
such that −4a3 − 27b2 is a square in Z.

Solution: (kindly provided by my professor Vera Serganova.) We can do it in the following way. We
want d2 = −4a3 − 27b2 or, equivalently, a3 = (d2 + 27b2)/4. We note that the right hand side is the
norm of (d+ 3b

√
−3)/2 in the field Q(ω), where ω is a primitive third root of unity. For any α ∈ Z[ω],

the norm of α3 is the cube of the norm of α. Since the norm of α is integral, we can take any α and
set α3 = (d+ 3b

√
−3)/2 and then a is the norm of α. To make a and b relatively prime, we can take

for example α = (1 + 3p
√
−3)/2 with p prime. Then b and d are relatively prime, and hence so are a

and b.
�

Problem 38. (Lang VI.31) Let F be a finite field and K a finite extension of F . Show that the norm
NK
F and the trace TKF are surjective (as maps from K into F ).

Solution: Let p be the characteristic of F . We write TKF and NK
F simply as T and N , respectively.

First we prove that the trace is surjective. Since T : K → F is a linear transformation of vector
spaces over F , and F has dimension 1, we have that Im(T ) is either 0 or F . Since K/F is a finite
Galois extension, its Galois group G is finite. Therefore, by Artin theorem, the elements of G must
be linearly independent. This implies that there is a ∈ K× such that T (a) 6= 0. Hence Im(T ) = F .

Now we prove that N is surjective. Suppose that |K| = pn. The extension K/F is Galois because
K/F is finite and separable. Let G be the Galois group of K/F . Since every finite extension of a finite
field is cyclic, there exists φ ∈ G such that G = 〈φ〉. On the other hand, the groups of units K∗ and
F ∗ of K and F are cyclic. Since N is multiplicative, it induces a group homomorphism LN : K∗ → F ∗

given by LN (a) = N(a). An element a ∈ K∗ is in ker(LN ) if and only if

1 =

n−1∏
i=0

φi(a) =

n−1∏
i=0

ap
i

= a1+p+···pn−1

.

This happens if and only if a is a root of the polynomial p(x) = xc − 1 where c = 1 + p + · · · pn−1.
Therefore | ker(LN )| = c, and so

|K∗/ ker(LN )| = pn − 1

c
= p− 1.

By the first isomorphism theorem, |Im(LN )| = p− 1. Hence LN is surjective and then so is N .
�

Problem 39. (Hungerford V.8.9) If n > 2 and ζ is a primitive n-th root of unity over Q, then
[Q(ζ + ζ−1) : Q] = ϕ(n)/2.

Solution: Denote by K the field Q(ζ+ ζ−1). Let G be the Galois group of the field extension Q(ζ)/Q.
Let σ ∈ G be the conjugation automorphism. Consider the cyclic subgroup 〈σ〉 of G. We shall prove
that K is the fixed field of 〈σ〉. It is easy to see that σ fixes K. Suppose that φ ∈ G fixes ζ + ζ−1.
Then

ζ + ζ−1 = φ(ζ + ζ−1) = φ(ζ) + φ(ζ)−1. (5)

Since ζ is primitive, φ(ζ) = ζi for some i. Substituting φ(ζ) = ζi conveniently in the above expression,
we obtain ζ(ζi+1 − 1)(ζi−1 − 1) = 0. Therefore i is either 1 (mod ϕ(n)) or −1 (mod ϕ(n)). Hence K
is the fixed field of 〈σ〉. Then, by the Galois correspondence theorem, [Q(ζ) : K] = 2. This implies
that

[K : Q] = [Q(ζ) : Q]/[Q(ζ) : K] = ϕ(n)/2.
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�

Problem 40. (Hungerford V.8.9) Let p be prime and ζ be a primitive p-th root of unity. Find all
subfields F ⊆ Q(ζ) such that [F : Q] = 2.

Solution: The Galois group G of the extension Q(ζ)/Q is isomorphic to (Z/pZ)×. Since G is cyclic and
|G| = p−1, it contains only one subgroup H of order p−1

2 . This implies, by the Galois correspondence
theorem, that there is only one intermediate field F of Q(ζ)/Q such that [F : Q] = 2, namely the fixed

field of H. Since H is a cyclic group, we can write H = 〈σ〉 where σ ∈ H. If τ = T
Q(ζ)
F (ζ) ∈ F then

Q(τ) ⊆ F . Now suppose that ρ ∈ G fixes τ . Since ζ, . . . , ζp−1 form a basis for Q(ζ) over Q, τ can be
written uniquely as a linear combination of the ζi’s. The fact that ρ fixes τ implies that ρ(ζ) = σj(ζ)
for some j. Consequently ρ = σj ∈ H. Hence we can conclude that F = Q(τ) is the only intermediate
field of degree 2 over Q.

�

Problem 41. Show that any finite group is isomorphic to the Galois group of some finite extension
F ⊆ E.

Solution: Suppose that G is a finite group of order n. The action of G on itself by left multiplication
induces a homomorphism f : G → Sn. Since f is injective we can think of G as a subgroup of Sn.
Also, we have seen that for each n the symmetric group Sn is the Galois group of a field extension
E/F . Since G is a subgroup of Sn, by the Galois correspondence, there exists an intermediate field
K of the extension E/F such that Gal(E/K) is isomorphic to G.

�

Problem 42. Let Q̄ ⊂ C denote the subfield of algebraic numbers and G be the (infinite) Galois group
of Q̄ over Q. We call α ∈ Q̄ totally real if g(α) ∈ R for any g ∈ G.
(a) Prove that the set H of all totally real elements is a subfield of Q̄.
(b) Is the field extension H/Q normal?

Solution: (a) Suppose that α, β ∈ H. For any g ∈ G g(0) = 0 ∈ R and g(α + β) = g(α) + g(β) ∈ R.
Also, g(1) = 1 and, if β 6= 0, g(αβ−1) = g(α)g(β)−1 ∈ R. Therefore H is a subfield of Q̄.

(b) Suppose that f(x) ∈ Q[x] is an irreducible polynomial with splitting field F ⊂ Q̄. Let α be a
root of f(x) in H. Let β ∈ F be another root of f(x). Since f(x) is irreducible, GF = Gal(F/Q) acts
transitively on the roots of f . Then there exists σ ∈ GF such that σ(α) = β. Since any automorphism
of F extends to its algebraic closure Q̄, there exists σ̄ ∈ G such that σ̄|F = σ. Now suppose that g
is an arbitrary element of G. Then g(β) = (g ◦ σ̄)(α) ∈ R; this is because g ◦ σ̄ ∈ G and α ∈ H.
Therefore β ∈ H. Hence all roots of f(x) are in H. Since f(x) was arbitrarily taken, H/Q is a normal
extension.

�

Problem 43. Let p be a prime number and F be the splitting field for the family of polynomials
xp

r − 1 for all r > 0. Prove that the Galois group of F over Q is isomorphic to the inverse limit
lim←−r(Z/p

rZ)×.

Solution: The splitting field of pr(x) = xp
r − 1 is Fr = Q(ζr) where ζr is a primitive prth root of

unity. Therefore F = Q(ζ1, ζ2, . . . ). Since each ζi is separable over Q so is F . Then F/Q is a Galois
extension. Let G be the Galois group of the extension F/Q and Gr ≈ (Z/prZ)× be the Galois group
of the extension Fr/Q.
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For j ≥ i we define qji : Gj → Gi by qji (σ) = σ|Fi
. Then (Gi, q

j
i ) is a directed family of groups.

Let Ḡ be its inverse limit. We show that Ḡ is isomorphic to G. Define the map f : G → Ḡ by
f(σ) = (σ|Fr

). Since qji (σ|Fj
) = σ|Fi

for j ≥ i, the map f is well defined. Also f is a homomorphism.
We show that f is injective. If σ ∈ ker(f) then σ|Fr is the identity for any r > 0. Since F = ∪Fr, for
each x ∈ F there exists r such that x ∈ Fr. So σ(x) = σ|Fr (x) = x. Hence f is injective. Now take
(σr) ∈ Ḡ. Define σ ∈ G as follows. For x ∈ F take r such that x ∈ Fr, and set σ(x) = σr(x). Suppose
that x ∈ Fi and x ∈ Fj for i ≤ j. Since (σr) ∈ Ḡ, σj |Fi

= σi. So σ(x) does not depends on the choice
of r. Since F1, F2, . . . is an increasing sequence of fields whose union is F , the fact that f |Fr

is an
automorphism for each r > 0 implies that σ is an automorphism of F . Since σ ∈ G and f(σ) = (σr),
the homomorphism f is surjective. Hence f is an isomorphism, which implies that

Gal(F/Q) = G ≈ lim←−
r

Gr = lim←−
r

(Z/prZ)×.

�
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6 Further Problems

Problem 44. Prove the following statements.
(a) The group of rotational symmetries of the icosahedron is isomorphic to A5.
(b) PSL(2,F5) ≈ A5.

Problem 45. Consider all ideals of Z as forming a directed system, by divisibility. Prove that

lim←−
(a)

Z/(a) =
∏
p

Zp,

where the limit is taken over all ideals (a), and the product is taken over all prime p.

Problem 46. Find a ring R such that R is not isomorphic to Rop.

Problem 47. Let k be a field, G be a finite group, and k[G] denote the group ring.
(a) Show that any finitely generated k[G]-module is finite-dimensional over k.
(b) Show that any finite dimensional projective module is injective.

Problem 48. (Lang III.25) Show that any module is a directed limit of finite presented modules.

Problem 49. (Lang III.26) Let E be a module over a ring. Let (Mi) be a directed family of modules.
If E is finitely generated, show that the natural homomorphism

lim−→Hom(E,Mi)→ Hom(E, lim−→Mi)

is injective. If E is finitely presented, show that this homomorphism is an isomorphism.


