Friendly Introduction to the Factorization Theory of Numerical Semigroups

Felix Gotti
felixgotti@berkeley.edu

UC Berkeley

Residents Symposium, PURE Math 2015
Outline

1. Basic Notions
2. Numerical Monoids
3. Factorization Invariants
4. The Catenary Degree
Commutative Cancellative Monoid

Consider the pair \((S, +)\), where \(S\) is a nonempty set and \(+ : S \times S \to S\) a binary operation.

- \((S, +)\) is associative if \(a + (b + c) = (a + b) + c\) for all \(a, b, c \in S\).
- \(e \in S\) is called an identity if \(e + a = a + e = a\) for all \(a \in S\).

Definition (Monoid)

If the pair \((M, +)\) is associative and contains an identity, we say that \((M, +)\) is a *monoid*.
Commutative Cancellative Monoid

With notation as before:

- \((S, +)\) is **commutative** if \(a + b = b + a\) for all \(a, b, c \in S\).
- A commutative pair \((S, +)\) is **cancellative** if \(c + a = c + b\) implies \(a = b\) for all \(a, b, c \in S\).

Remark: In Factorization Theory, we only study monoids that are commutative and cancellative, so we will omit to specify it.
Examples (Commutative Cancellative Monoid)

We have come across many monoids in elementary mathematics. For example:

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $(\mathbb{N}, +)$, whose identity is 0.</td>
</tr>
<tr>
<td>• $(\mathbb{N}^k, +)$, whose identity is $(0, \ldots, 0)$.</td>
</tr>
</tbody>
</table>

There are certainly other less standard monoids, such as the Hilbert monoid.

Example (Hilbert Monoid)

Consider the set $\mathcal{H} := \{1 + 4n \mid n \in \mathbb{N}\}$. Define the addition operation on \mathcal{H} to be

$$(1 + 4n) + (1 + 4m) := (1 + 4n)(1 + 4m) = 1 + 4(n + m + 4nm).$$

The identity of \mathcal{H} is 1.
Let M be a monoid.

- $u \in M$ is a **unit** if there exists $v \in M$ such that $u + v = e$. The set of units of M is denoted by M^\times.
- An element $a \in M \setminus M^\times$ is said to be **irreducible** or an **atom** if $a = u + v$ for some $u, v \in M$ implies that either u or v is a unit. The set of irreducible elements of M is denoted by $\mathcal{A}(M)$.
- M is said to be **atomic** if any element in $M \setminus M^\times$ can be written as the sum of irreducible elements.
Units and Irreducible Elements (Examples)

Example (1)
- The only unit of \((\mathbb{N}, +)\) is 0.
- The only irreducible element of \((\mathbb{N}, +)\) is 1.
- \((\mathbb{N}, +)\) is atomic.

Example (2)
- The only unit of \((\mathbb{N}^k, +)\) is \((0, \ldots, 0)\).
- If \(M = (\mathbb{N}^k, +)\) then \(\mathcal{A}(M) = \{ e_i \mid 1 \leq i \leq k \}\), where \(e_i\) is the element of \(\mathbb{N}^k\) with 1 in the \(i\)-th coordinate and zeroes elsewhere.
- \((\mathbb{N}^k, +)\) is atomic.
Definition (Numerical Semigroup)
An additive submonoid $M \subseteq \mathbb{N}$ is said to be a *numerical monoid* if $\mathbb{N} \setminus M$ is finite.

If a submonoid $M \subseteq \mathbb{N}$ is generated by $\{ a_1, \ldots, a_k \}$ we write $M = \langle a_1, \ldots, a_k \rangle$. We always assume that $a_1 < \cdots < a_k$. The following theorem hold.

Theorem
1. Every numerical monoid is finitely generated.
2. A submonoid $M = \langle a_1, \ldots, a_k \rangle$ of \mathbb{N} is a numerical monoid if and only if $\gcd(a_1, \ldots, a_k) = 1$.
Further definitions and notation:

1. A numerical monoid \(M = \langle S \rangle \) is **minimally generated by** \(S \) if no proper subset of \(S \) generates \(M \).

2. If \(M = \langle a_1, \ldots, a_k \rangle \) is minimally generated, then \(\mathcal{A}(M) = \{ a_1, \ldots, a_k \} \), and \(n \) is called the **embedding dimension** of \(M \).

3. \(g \) is a **gap** of \(M \) if \(g \in \mathbb{N} \setminus M \).
 - The set of gaps is denoted by \(G(M) \).
 - The maximum of \(G(M) \), denoted by \(F(M) \), is called the **Frobenius number** of \(M \).
Examples of Numerical Semigroups

Example (1)
- $M = \langle 8, 9, 19 \rangle$ is a numerical monoid because $\gcd(8, 9, 19) = 1$.
- M has embedding dimension 3.
- $\mathcal{F}(M) = 39$.

Example (2)
- $M_n = \langle n, n + 3, n + 5 \rangle$ is a numerical monoid for every $n \in \mathbb{N}$ since $\gcd(n, n + 3, n + 5) = 1$.
- M has embedding dimension 3.
Families of Numerical Semigroups

Arithmetic Monoid:

Definition

A numerical monoid $M = \langle a, a + d, \ldots, a + kd \rangle$ where $a, k, d \in \mathbb{N}$ such that $1 \leq k < a$ and $\gcd(a, d) = 1$ is called arithmetic monoid.

Examples (Arithmetic Monoid)

- $M = \langle 3, 8, 13 \rangle$. Here $a = 3$, $d = 5$, and $k = 2$.
- Any embedding dimension 2 numerical monoid $M = \langle x, y \rangle$ is an arithmetic monoid, where $d = y - x$ and $k = 1$.
- An arithmetic monoid with $d = 1$ is called numerical monoid generated by an interval.
Generalized Arithmetic Monoid:

Definition

A numerical monoid \(M = \langle a, ha + d, \ldots, ha + kd \rangle \) where \(a, h, k, d \in \mathbb{N} \) such that \(1 \leq k < a \) and \(\gcd(a, d) = 1 \) is called the **generalized arithmetic monoid**.

Example (Generalized Arithmetic Monoid)

- \(M = \langle 3, 8, 10 \rangle = \langle 3, 2 \cdot 3 + 2, 2 \cdot 3 + 2 \cdot 2 \rangle \).

 So \(a = 3, h = 2, d = 2, \) and \(k = 2 \).

- \(\langle 5, 52, 59 \rangle = \langle 5, 5 \cdot 9 + 7, 5 \cdot 9 + 2 \cdot 7 \rangle \).

 So \(a = 5, h = 9, d = 7, \) and \(k = 2 \).

- Any arithmetic monoid is a generalized arithmetic monoid where \(h = 1 \).
Let $M = \langle a_1, \ldots, a_k \rangle$ be a minimally generated numerical monoid.

- The **factorization map** of M is $\varphi : \mathbb{N}^k \rightarrow M$ defined by
 \[\varphi(z_1, \ldots, z_k) = z_1a_1 + \cdots + z_ka_k. \]

- $z = (z_1, \ldots, z_k) \in \mathbb{N}^k$ is said to be a **factorization** of $a \in M$ if $\varphi(z) = a$.

- The **set of factorizations** of $a \in M$ is defined by
 \[Z(a) := \varphi^{-1}(a) = \{ (z_1, \ldots, z_k) \mid \varphi(z_1, \ldots, z_k) = a \}. \]

Example (Factorizations)

Let $M = \langle 3, 8, 13 \rangle$ and $30 \in M$.

- $30 = 10 \cdot 3 + 0 \cdot 8 + 0 \cdot 13$, then $z_1 = (10, 0, 0) \in Z(30)$.
- $30 = 2 \cdot 3 + 3 \cdot 8 + 0 \cdot 13$, then $z_2 = (2, 3, 0) \in Z(30)$.
- $30 = 3 \cdot 3 + 1 \cdot 8 + 1 \cdot 13$, then $z_3 = (3, 1, 1) \in Z(30)$.
- Actually, $Z(30) = \{ z_1, z_2, z_3 \}$.
Let $M = \langle a_1, \ldots, a_k \rangle$ be a minimally generated numerical monoid.

- If $z = (z_1, \ldots, z_k)$ is a factorization of a, the *length* of z is $|z| = z_1 + \cdots + z_k$. The set of all lengths of a is defined $L(a)$.
- For $z = (z_1, \ldots, z_k)$, $z' = (z'_1, \ldots, z'_k) \in Z(a)$ we set $\gcd(z, z') = (\min\{z_1, z'_1\}, \ldots, \min\{z_p, z'_p\})$.
- The *distance* between z and z' is defined by $d(z, z') = \max\{|z - \gcd(z, z')|, |z' - \gcd(z, z')|\}$.

Examples (Length and Distance)

Let $M = \langle 3, 8, 13 \rangle$ and $30 \in M$.

- $Z(30) = \{ z_1 = (10, 0, 0), z_2 = (2, 3, 0), z_3 = (3, 1, 1) \}$
- $|z_1| = 10$, $|z_2| = 5$, and $|z_3| = 5$.
- $\gcd(z_1, z_2) = (2, 0, 0)$ and $\gcd(z_2, z_3) = (2, 1, 0)$.
- $d(z_1, z_2) = 8$ and $d(z_2, z_3) = 2$.
Definition (Set of Lengths)

Let M be a minimally generated numerical monoid. The *set of lengths* of $a \in M$ is the set

$$L(a) = \{ |z| \mid z \in Z(a) \}.$$

Example (Set of Lengths)

For $M = \langle 3, 8, 13 \rangle$ and $30 \in M$, we have seen that

$$Z(30) = \{ (10, 0, 0), (2, 3, 0), (3, 1, 1) \}.$$

Therefore

$$L(30) = \{ 5, 10 \}.$$
Let M be a numerical monoid, and let $a \in M$. Given $z, z' \in Z(a)$ and $N \geq 1$, an N-chain from z to z' is a sequence $z_0, \ldots, z_n \in Z(a)$ of factorizations of a such that $z_0 = z$, $z_n = z'$, and $d(z_{i-1}, z_i) \leq N$ for every $i = 1, \ldots, n$.

Definition (Catenary Degree)

The *catenary degree* of a, denoted $c(a)$, is the smallest non-negative integer N such that there exists an N-chain between any two factorizations of a. The *catenary degree* of M is the number

$$c(M) = \sup\{ c(a) \mid a \in M \}.$$
Computing Catenary Degree

Let $M = \langle 3, 8, 10 \rangle$ and $a = 36$.

Figure: Catenary Graph of $a = 36$
Let M be a numerical monoid.

Definition (Betti Graph)

For each nonzero $a \in M$ consider the graph ∇_a whose set of vertices is $Z(a)$, in which two vertices $z, z' \in Z(a)$ share an edge if $\gcd(z, z') \neq 0$.

Definition (Betti Element)

Let $\beta \in M$. If ∇_β is not connected, then β is called a *Betti element* of M. We write

$$\text{Betti}(M) = \{ \beta \in M \mid \nabla_\beta \text{ is disconnected} \}$$

for the set of Betti elements of M.
The following theorems give evidence of the importance of the set of Betti elements.

Theorem

If M is a numerical monoid then $\text{Betti}(M)$ is finite.

Theorem

If M is a numerical monoid then the following hold.

- There exists $\beta \in \text{Betti}(M)$ such that $c(\beta) = c(M)$.
- There exists $\beta' \in \text{Betti}(M)$ such that $c(\beta') \leq c(a)$ for every $a \in M$.
Let $M = \langle 5, 18, 21, 24, 27 \rangle$ and $a = 54$. It is a Betti element.

Figure: Betti Graph of $a = 54$
Let $M = \langle 5, 18, 21, 24, 27 \rangle$ and $a = 60$. It is NOT a Betti element.

Figure: Betti Graph of $a = 60$
References

- P. A. Garcia-Sanchez and J. C. Rosales. *Numerical Semigroups*.