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Definition of Matroids

Definition (Matroid)

Let E be a finite set, and let B be a nonempty collection of subsets
of E . The pair M = (E ,B) is a matroid if for all B,B ′ ∈ B and
b ∈ B \B ′, there exists b′ ∈ B ′ \B such that (B \ {b})∪ {b′} ∈ B.

If M = (E ,B) is a matroid, then:

the elements of B are said to be bases of M;

a subset of a basic element is called independent.

Proposition: Bases of the same matroid have the same cardinality.

Given a matroid M, the rank of M, denoted by r(M), is the
size of any basis.
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Operations on Matroids

Let M = (E ,B) and M ′ = (E ′,B′) be two matroids and S ⊆ E .

1 M ⊕M ′ := (E t E ′, {B t B ′ : B ∈ B and B ′ ∈ B′}) is a
matroid, which is called the direct sum of M and M ′.

2 M∗ := (E , {E \ B : B ∈ B}) is a matroid, which is called the
dual matroid of M.

3 M|S := (S , {B ∩ S : B ∈ B and |B ∩ S | is maximal}) is a
matroid, which is called restriction of M to S .

4 M/S := (E \ S , {B \ S : B ∈ B and |B ∩ S | is maximal}) is a
matroid, which is called contraction of M by S .
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Definition of Positroids

Let F be a field and d , n ∈ N such that d ≤ n.

Definition

A matroid M = ([n],B) of rank d is representable if there is
A ∈ Md×n(F) with columns A1, . . . ,An such that B ⊆ [n] is a basis
of M iff {Ai | i ∈ B} is a basis for Fd .

With notation as above, we say that M is represented by A.

We say that a real matrix is totally nonnegative (TNN) if all
its maximal minors are nonnegative.

Definition (Positroid)

A positroid on [n] or rank d is a matroid that can be represented
by a d × n full-rank TNN real matrix.
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New Positroids from Old Ones

If n ∈ N and `,m ∈ [n] the cyclic interval [`,m] is

[`,m] =

{
{`, `+ 1, . . . ,m} if ` ≤ m
{`, `+ 1, . . . , n, 1, . . . ,m} if ` > m

.

Theorem (Ardila-Rincón-Williams)

Let [`+ 1,m] and [m + 1, `] be a decomposition of [n] into two
cyclic intervals, and let M and M ′ be two positroids on the ordered
ground sets [`+ 1,m] and [m + 1, `], respectively. Then M ⊕M ′ is
a positroid on [n].

Theorem (Ardila-Rincón-Williams)

Let M be a positroid on [n], and let S ⊆ [n]. Then the dual, the
restriction, and the contraction of M are also positroids.
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Grassman Necklaces

Let d , n ∈ N such that d ≤ n.

Definition (Grassmann Necklace)

An n-tuple (I1, . . . , In) of d-subsets of [n] is called a Grassmann
necklace of type (d , n) if for all i ∈ [n] the next conditions hold:

i ∈ Ii implies Ii+1 = (Ii \ {i}) ∪ {j} for some j ∈ [n];

i /∈ Ii implies Ii+1 = Ii .

Remark: In the above definition, we assume that In+1 = I1.

Definition: The i-th order on [n] is defined by

i <i i + 1 <i · · · <i n <i 1 <i · · · <i i − 2 <i i − 1.

For a rank d matroid M we can define I(M) = (I1, . . . , In), where
Ii is the lexicographically <i -minimal basis of M.
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Grassmann Necklaces and Positroids

Proposition

For any matroid M = ([n],B) of rank d, the sequence I(M) is a
Grassmann necklace of type (d , n).

Theorem (Postnikov)

For d , n ∈ N such that d ≤ n, let I = (I1, . . . , In) be a Grassmann
necklace of type (d , n). Then

B(I) =

{
B ∈

(
[n]

d

) ∣∣∣∣ Ij ≺j B for every j ∈ [n]

}
is the collection of bases of a positroid P(I) = ([n],B(I)), where

≺i is the Gale i-order on
([n]
d

)
. Moreover, P(I(P)) = P for all

positroids P.
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A Bijective Representation Via Grassmann
Necklaces

Denoting the set of all positroids on [n] of rank d by Pd ,n, we have
the following result.

Corollary

The map I : Pd ,n → I(Pd ,n) is a bijection.
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Decorated Permutations

Decorated permutations, also in one-to-one correspondence with
positroids, will provide a more succinct representation.

Definition (Decorated Permutation)

A decorated permutation of [n] is an element π ∈ Sn whose fixed
points j are marked either “clockwise”(denoted by π(j) = j) or

“counterclockwise” (denoted by π(j) = j).

Observation: A weak i-excedance of a decorated permutation
π ∈ Sn is an index j ∈ [n] satisfying j <i π(j) or π(j) = j . It is
easy to see that the number of weak i-excedances does not depend
on i , so we just call it the number of weak excedances.
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Decorated Permutations and Grassmann Necklaces

To every Grassmann necklace I = (I1, . . . , In) one can associate a
decorated permutation πI as follows:

if Ii+1 = (Ii \ {i}) ∪ {j}, then πI(j) = i ;

if Ii+1 = Ii and i /∈ Ii , then πI(i) = i ;

if Ii+1 = Ii and i ∈ Ii , then πI(i) = i .

The assignment I 7→ πI defines a one-to-one correspondence
between the set of Grassmann necklaces of type (d , n) and the set
of decorated permutations of [n] having exactly d weak excedances.

Proposition

The map I 7→ πI is a bijection between the set of Grassmann
necklaces of type (d , n) and the set of decorated permutations of
[n] having exactly d weak excedances.
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Postnikov’s Map

Lemma (Postnikov)

For an n × n real matrix A = (ai ,j), consider the n × 2n matrix
B = φ(A), where

a1,1 . . . a1,n
...

. . .
...

an−1,1 . . . an−1,n
an,1 . . . an,n

 φ7→


1 . . . 0 0 ±an,1 . . . ±an,n
...

. . .
...

...
...

. . .
...

0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n

.
Under this correspondence, ∆I ,J(A) = ∆([n]\I )∪(n+J)(B) for all
I , J ⊆ [n] satisfying |I | = |J| (here ∆I ,J(A) is the minor of A
determined by the rows I and columns J, and ∆K (B) is the
maximal minor of B determined by columns K).
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Dyck Matrices

Definition (Dyck Matrix)

A binary square matrix is said to be a Dyck matrix if its zero
entries form a right-justified Young diagram strictly above the
main diagonal and anchored in the upper-right corner.

Notation: Dn will denote the set of all n × n Dyck matrices.
Example: The following 6× 6 matrix is a Dyck matrix:

.Observations:

All minors of a Dyck matrix are TNN.

|Dn| = 1
n+1

(2n
n

)
, the n-th Catalan number.
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Unit Interval Positroids

Each Dyck matrix D ∈ Dn induces a positroid via the Postnikov’s
map, namely, the positroid represented by the full-rank TNN
matrix φ(D).

Definition (Unit Interval Positroid)

A positroid on [2n] induced by a unit interval order is called unit
interval positroid.

Notation: Let Pn denote the set of all unit interval positroids on
the ground set [2n], and let ϕ : Dn → Pn be the map described
above.
Observations:

The map ϕ is onto by definition.

There are at most 1
n+1

(2n
n

)
unit interval positroids on [2n].
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Decorated Permutation of Unit Interval Positroids

Decorated permutations of positroids in Pn are 2n-cycles satisfying
certain special properties.

Theorem (Chavez-G)

Decorated permutations associated to unit interval positroids on
[2n] are 2n-cycles (1 j1 . . . j2n−1) satisfying the following two
conditions:

1 in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear
in increasing order while the elements n + 1, . . . , 2n appear in
decreasing order;

2 for every 1 ≤ k ≤ 2n − 1, the set {1, j1, . . . , jk} contains at
least as many elements of the set {1, . . . , n} as elements of
the set {n + 1, . . . , 2n}.
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Decorated Permutation from Dyck Matrix

Theorem (Chavez-G)

If we number the n vertical steps of the semiorder path of A from
bottom to top in increasing order with {1, . . . , n} and the n
horizontal steps from left to right in increasing order with
{n + 1, . . . , 2n}, then we get the decorated permutation of the unit
interval positroid induced by P by reading the semiorder path in
northwest direction.

Example: From the following Dyck matrix D (or φ(D))

we recover the decorated permutation π = (1 2 10 3 9 4 8 7 5 6).
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Counting Unit Interval Positroids

Theorem (Chavez-G)

The map ϕ : Dn → Pn is a bijection.

Corollary

There number of unit interval positroids on [2n] is precisely the
n-th Catalan number.
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