Introduction to Positroids, and Unit Interval Positroids

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

TACOS, UC Berkeley

December 6, 2016

2 Representations of Positroids

Unit Interval Positroids

Definition (Matroid)

Let *E* be a finite set, and let *B* be a nonempty collection of subsets of *E*. The pair M = (E, B) is a *matroid* if for all $B, B' \in B$ and $b \in B \setminus B'$, there exists $b' \in B' \setminus B$ such that $(B \setminus \{b\}) \cup \{b'\} \in B$.

If M = (E, B) is a matroid, then:

- the elements of \mathcal{B} are said to be *bases* of M;
- a subset of a basic element is called *independent*.

Proposition: Bases of the same matroid have the same cardinality.

• Given a matroid *M*, the *rank* of *M*, denoted by r(M), is the size of any basis.

Let $M = (E, \mathcal{B})$ and $M' = (E', \mathcal{B}')$ be two matroids and $S \subseteq E$.

- $M \oplus M' := (E \sqcup E', \{B \sqcup B' : B \in \mathcal{B} \text{ and } B' \in \mathcal{B}'\})$ is a matroid, which is called the *direct sum* of M and M'.
- ② $M^* := (E, \{E \setminus B : B \in B\})$ is a matroid, which is called the *dual* matroid of *M*.
- $M|S := (S, \{B \cap S : B \in \mathcal{B} \text{ and } |B \cap S| \text{ is maximal}\})$ is a matroid, which is called *restriction* of M to S.
- $M/S := (E \setminus S, \{B \setminus S : B \in \mathcal{B} \text{ and } |B \cap S| \text{ is maximal}\})$ is a matroid, which is called *contraction* of M by S.

Let \mathbb{F} be a field and $d, n \in \mathbb{N}$ such that $d \leq n$.

Definition

A matroid $M = ([n], \mathcal{B})$ of rank d is *representable* if there is $A \in M_{d \times n}(\mathbb{F})$ with columns A_1, \ldots, A_n such that $B \subseteq [n]$ is a basis of M iff $\{A_i \mid i \in B\}$ is a basis for \mathbb{F}^d .

- With notation as above, we say that *M* is *represented* by *A*.
- We say that a real matrix is *totally nonnegative* (TNN) if all its maximal minors are nonnegative.

Definition (Positroid)

A *positroid* on [n] or rank d is a matroid that can be represented by a $d \times n$ full-rank TNN real matrix.

New Positroids from Old Ones

If $n \in \mathbb{N}$ and $\ell, m \in [n]$ the cyclic interval $[\ell, m]$ is

$$[\ell, m] = \begin{cases} \{\ell, \ell+1, \dots, m\} & \text{if } \ell \le m \\ \{\ell, \ell+1, \dots, n, 1, \dots, m\} & \text{if } \ell > m \end{cases}$$

Theorem (Ardila-Rincón-Williams)

Let $[\ell + 1, m]$ and $[m + 1, \ell]$ be a decomposition of [n] into two cyclic intervals, and let M and M' be two positroids on the ordered ground sets $[\ell + 1, m]$ and $[m + 1, \ell]$, respectively. Then $M \oplus M'$ is a positroid on [n].

Theorem (Ardila-Rincón-Williams)

Let M be a positroid on [n], and let $S \subseteq [n]$. Then the dual, the restriction, and the contraction of M are also positroids.

Grassman Necklaces

Let $d, n \in \mathbb{N}$ such that $d \leq n$.

Definition (Grassmann Necklace)

An *n*-tuple (I_1, \ldots, I_n) of *d*-subsets of [n] is called a *Grassmann* necklace of type (d, n) if for all $i \in [n]$ the next conditions hold:

•
$$i \in I_i$$
 implies $I_{i+1} = (I_i \setminus \{i\}) \cup \{j\}$ for some $j \in [n]$;

•
$$i \notin I_i$$
 implies $I_{i+1} = I_i$.

Remark: In the above definition, we assume that $I_{n+1} = I_1$.

Definition: The *i*-th order on [*n*] is defined by

$$i <_i i + 1 <_i \dots <_i n <_i 1 <_i \dots <_i i - 2 <_i i - 1.$$

For a rank *d* matroid *M* we can define $\mathcal{I}(M) = (I_1, \ldots, I_n)$, where I_i is the lexicographically $<_i$ -minimal basis of *M*.

Proposition

For any matroid M = ([n], B) of rank d, the sequence $\mathcal{I}(M)$ is a Grassmann necklace of type (d, n).

Theorem (Postnikov)

For $d, n \in \mathbb{N}$ such that $d \leq n$, let $\mathcal{I} = (I_1, \dots, I_n)$ be a Grassmann necklace of type (d, n). Then

$$\mathcal{B}(\mathcal{I}) = \left\{B \in inom{[n]}{d} \mid I_j \prec_j B ext{ for every } j \in [n]
ight\}$$

is the collection of bases of a positroid $\mathcal{P}(\mathcal{I}) = ([n], \mathcal{B}(\mathcal{I}))$, where \prec_i is the Gale *i*-order on $\binom{[n]}{d}$. Moreover, $\mathcal{P}(\mathcal{I}(P)) = P$ for all positroids P.

A Bijective Representation Via Grassmann Necklaces

Denoting the set of all positroids on [n] of rank d by $\mathcal{P}_{d,n}$, we have the following result.

Corollary

The map $\mathcal{I} \colon \mathcal{P}_{d,n} \to \mathcal{I}(\mathcal{P}_{d,n})$ is a bijection.

Decorated permutations, also in one-to-one correspondence with positroids, will provide a more succinct representation.

Definition (Decorated Permutation)

A decorated permutation of [n] is an element $\pi \in S_n$ whose fixed points j are marked either "clockwise" (denoted by $\pi(j) = \underline{j}$) or "counterclockwise" (denoted by $\pi(j) = \overline{j}$).

Observation: A weak *i*-excedance of a decorated permutation $\pi \in S_n$ is an index $j \in [n]$ satisfying $j <_i \pi(j)$ or $\pi(j) = \overline{j}$. It is easy to see that the number of weak *i*-excedances does not depend on *i*, so we just call it the number of weak excedances.

To every Grassmann necklace $\mathcal{I} = (I_1, \ldots, I_n)$ one can associate a decorated permutation $\pi_{\mathcal{I}}$ as follows:

- if $I_{i+1} = (I_i \setminus \{i\}) \cup \{j\}$, then $\pi_{\mathcal{I}}(j) = i$;
- if $I_{i+1} = I_i$ and $i \notin I_i$, then $\pi_{\mathcal{I}}(i) = \underline{i}$;
- if $I_{i+1} = I_i$ and $i \in I_i$, then $\pi_{\mathcal{I}}(i) = \overline{i}$.

The assignment $\mathcal{I} \mapsto \pi_{\mathcal{I}}$ defines a one-to-one correspondence between the set of Grassmann necklaces of type (d, n) and the set of decorated permutations of [n] having exactly d weak excedances.

Proposition

The map $\mathcal{I} \mapsto \pi_{\mathcal{I}}$ is a bijection between the set of Grassmann necklaces of type (d, n) and the set of decorated permutations of [n] having exactly d weak excedances.

Postnikov's Map

Lemma (Postnikov)

For an $n \times n$ real matrix $A = (a_{i,j})$, consider the $n \times 2n$ matrix $B = \phi(A)$, where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}$$

Under this correspondence, $\Delta_{I,J}(A) = \Delta_{([n]\setminus I)\cup(n+J)}(B)$ for all $I, J \subseteq [n]$ satisfying |I| = |J| (here $\Delta_{I,J}(A)$ is the minor of A determined by the rows I and columns J, and $\Delta_K(B)$ is the maximal minor of B determined by columns K).

Dyck Matrices

Definition (Dyck Matrix)

A binary square matrix is said to be a *Dyck matrix* if its zero entries form a right-justified Young diagram strictly above the main diagonal and anchored in the upper-right corner.

Notation: D_n will denote the set of all $n \times n$ Dyck matrices. **Example:** The following 6×6 matrix is a Dyck matrix:

$$\begin{pmatrix} \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Observations:

- All minors of a Dyck matrix are TNN.
- $|\mathcal{D}_n| = \frac{1}{n+1} {\binom{2n}{n}}$, the *n*-th Catalan number.

Each Dyck matrix $D \in \mathcal{D}_n$ induces a positroid via the Postnikov's map, namely, the positroid represented by the full-rank TNN matrix $\phi(D)$.

Definition (Unit Interval Positroid)

A positroid on [2n] induced by a unit interval order is called *unit interval positroid*.

Notation: Let \mathcal{P}_n denote the set of all unit interval positroids on the ground set [2n], and let $\varphi \colon \mathcal{D}_n \to \mathcal{P}_n$ be the map described above.

Observations:

- The map φ is onto by definition.
- There are at most $\frac{1}{n+1}\binom{2n}{n}$ unit interval positroids on [2n].

Decorated permutations of positroids in \mathcal{P}_n are 2*n*-cycles satisfying certain special properties.

Theorem (Chavez-G)

Decorated permutations associated to unit interval positroids on [2n] are 2n-cycles $(1 \ j_1 \ \dots \ j_{2n-1})$ satisfying the following two conditions:

- in the sequence (1, j₁,..., j_{2n-1}) the elements 1,..., n appear in increasing order while the elements n + 1,..., 2n appear in decreasing order;
- If or every 1 ≤ k ≤ 2n − 1, the set {1, j₁,..., j_k} contains at least as many elements of the set {1,..., n} as elements of the set {n + 1,..., 2n}.

Decorated Permutation from Dyck Matrix

Theorem (Chavez-G)

If we number the n vertical steps of the semiorder path of A from bottom to top in increasing order with $\{1, ..., n\}$ and the n horizontal steps from left to right in increasing order with $\{n+1,...,2n\}$, then we get the decorated permutation of the unit interval positroid induced by P by reading the semiorder path in northwest direction.

Example: From the following Dyck matrix D (or $\phi(D)$)

we recover the decorated permutation $\pi = (1 \ 2 \ 10 \ 3 \ 9 \ 4 \ 8 \ 7 \ 5 \ 6)$.

Felix Gotti felixgotti@berkeley.edu

Theorem (Chavez-G)

The map $\varphi \colon \mathcal{D}_n \to \mathcal{P}_n$ is a bijection.

Corollary

There number of unit interval positroids on [2n] is precisely the *n*-th Catalan number.

References

- F. Ardila, F. Rincón, and L. Williams. *Positroids and non-crossing partitions*, Trans. Amer. Math. Soc. 368 (2016) 337–363.
- A. Chavez and F. Gotti. *Dyck Paths and Positroids from Unit Interval Orders*. Submitted to FPSAC.
- S. Oh. Positroids and Schubert matroids, Journal of Combinatorial Theory, Series A 118 (2011), no. 8, 2426–2435.
- A. Postnikov. *Total positivity, grassmannians, and networks,* arXiv.org:math/0609764.
- M. Skandera and B. Reed. *Total nonnegativity and (3+1)-free posets*, J. Combin. Theory Ser. A 103 (2003), 237–256.
- R. P. Stanley. *Catalan Numbers*, Cambridge University Press, 2015.