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Definition of Incidence Algebra

Definition

Let P be a locally finite poset and k be a field.

I Int(P) denote the set of closed intervals of P.

I The incidence algebra of P over k, denoted by I (P, k) is the
k-algebra of all functions Int(P)→ k , where for f , g ∈ Int(P)
multiplication is defined via the convolution

fg(s, t) =
∑

s≤x≤t
f (s, x)g(x , t).

Remarks:

1. Multiplication in I (P, k) is well defined because P is locally
finite.

2. I (P, k) is an associative algebra with identity denoted by δ,
which satisfies that δ(s, t) = 1 if s = t, and δ(s, t) = 0
otherwise.

Felix Gotti felixgotti@berkeley.edu Incidence Algebra and Möbius Inversion Formula



Incidence Algebra (continuation)

Theorem

An element f ∈ I (P, k) has a two-sided inverse iff f (s, s) 6= 0 for
all s ∈ P.

Sketch of Proof: If fg = δ then, for s ∈ P,
f (s, s)g(s, s) = δ(s, s) = 1; so f (s, s) 6= 0 for all s ∈ P.
Conversely, if f (s, s) 6= 0 for all s ∈ P, we define
g(s, s) = f (s, s)−1 and, inductively,

g(s, t) = −f (s, s)−1
∑

s<x≤t
f (s, x)g(x , t) when s < t.

It follows immediately that g is a right inverse of f . Similarly, we
can find a left inverse h of f . By associativity of I (P, k), g = h.
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The Zeta Function

Definition

The zeta function ζ ∈ I (P, k) is defined by ζ(s, t) = 1 for all
s, t ∈ P such that s ≤ t.

Theorem

If n ∈ N the following holds:

1. ζn(s, t) =
∑

s=s0≤s1≤···≤sn=t 1, the number of multichains of
length n from s to t.

2. (ζ − 1)n(s, t) =
∑

s=s0<s1<···<sn=t 1, the number of chains of
length n from s to t.

3. 2− ζ is invertible, and (2− ζ)−1(s, t) counts the number of
chains from s to t.

Sketch of Proof: (1) and (2) follows by induction. For (3),
choose n = `([s, t]) in the identity

(2− ζ)−1(s, t) = [1 + (ζ − 1) + · · ·+ (ζ − 1)n](s, t).
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The Möbius Function

Since ζ(s, s) = 1 for all s ∈ P, it is invertible.

Definition

In a locally finite poset P, the inverse of ζ, denoted by µ, is called
Möbius function.

Theorem

The Möbius function is uniquely determined by the following
recurrence: µ(s, s) = 1 and µ(s, t) = −

∑
s≤x<t µ(s, x).

Proof: Exercise.
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The Möbius Inversion Formula

Theorem

Let k be a field and let P be a poset whose principal order ideals
are finite. For f , g ∈ I (P, k), we have that g(s) =

∑
t≤s f (t) for

each s ∈ P iff

f (s) =
∑
t≤s

g(t)µ(t, s) for each s ∈ P.

Sketch of Proof: The algebra I (P, k) acts on the right of the
vector space V of functions P → k via

(gϕ)(s) =
∑
t≤s

g(t)ϕ(t, s), for g ∈ V and ϕ ∈ I (P, k).

Then theorem then can be translated to g = f ζ iff gµ = f .
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The Intersection Example
Example: Let P be the poset of all possible intersection of the
finite sets S1, . . . ,Sn. For T ∈ P let f (T ) := |T \ (∪T ′<TT

′)| and
let g(T ) = |T |. Note that f (1̂) = f (S1 ∪ · · · ∪ Sn) = 0. Since
g(T ) =

∑
T ′≤T f (T ′), by the Möbius Inversion Formula:

f (T ) =
∑
T ′≤T

g(T ′)µ(T ′,T ).

Evaluating the above equation at T = 1̂, we obtain

0 = f (1̂) =
∑
I∈P

g(I )µ(I , 1̂),

which translate to

|S1 ∪ · · · ∪ Sn| = −
∑
I

µ(I ,S1 ∪ · · · ∪ Sn)|I |,

where I runs over all nonempty intersection of the Si ’s.
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The Product Theorem

Theorem (The Product Theorem)

Let P and Q be locally finite posets, and let P × Q be their direct
product. If (s, t) ≤ (s ′, t ′) in P × Q then

µP×Q((s, t), (s ′, t ′)) = µP(s, s ′)µQ(t, t ′).

Sketch of Proof: It is enough to check that F : Int(P × Q)→ k
defined by F ((s, t), (s ′, t ′)) = µP(s, s ′)µQ(t, t ′) satisfies the
defining recurrence of the Möbius function.
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The Sieve Method from the MIF
Example 2: The Möbius function of [n] is given by µ(i , i) = 1,
µ(i , i + 1) = −1, and µ(i , j) = 0 if j > i + 1.

Example 3: For n ∈ N, the poset Bn is isomorphic to the boolean
algebra 2n via S 7→ (s1, . . . , sn), where si = 1 iff i ∈ S . Then if
S ,T ∈ Bn such that S ⊆ T and T 7→ (t1, . . . , tn), we have

µ(S ,T ) = µ((s1, . . . , sn), (t1, . . . , tn))

=
∏
i∈[n]

µ[2](si , ti ) = (−1)|T\S |.

Therefore the Möbius Inversion Formula on Bn translates to the
Sieve Method: f (T ) =

∑
S⊆T g(S) iff

g(T ) =
∑
S⊆T

µ(S ,T )g(S) =
∑
S⊆T

(−1)|T\S |g(S).
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The MIF in Number Theory

Example: Let n = pn11 . . . pnkk , where ni ∈ N and p1, . . . , pk are
different primes. Then Dn is isomorphic to n1 + 1× · · · × nk + 1
via ni = pi11 . . . p

ik
k 7→ (i1 + 1, . . . , ik + 1). Therefore if

nj = (j1 + 1, . . . , jk + 1) such that ni divides nj , we have that

µDn(ni , nj) = µDn((i1 + 1, . . . , ik + 1), (j1 + 1, . . . , jk + 1))

=
k∏

t=1

µnt+1(it + 1, jt + 1)

Therefore µDn(ni , nj) = 0 if nj/ni is not squarefree and
µDn(ni , nj) = (−1)m, where m is the number of primes dividing
nj/ni , if nj/ni is squarefree. Note that µDn(ni , nj) = µ(nj/ni ),
where µ is the standard Möbius function defined in number theory.
Also, the Möbius Inversion Formula translates to the corresponding
formula in number theory.
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Möbius Algebra

Definition

Let L be a lattice and k be a field. The Möbius algebra, denoted
by A(L, k), is the k-space with basis L, with multiplication given by
s · t = s ∧ t for all s, t ∈ L.

Theorem

Let L be a finite lattice and let A′(L, k) be the algebra
⊕

s∈L ks ,
where ks ∼= k for all s ∈ L. If δ′s is the identity of ks then the map
θ : A(L, k)→ A(L, k ′) defined by θ(δs) = δ′s and extended by
linearity is an algebra isomorphism.

Sketch of Proof: The map θ sends a basis to a basis, so it is a
k-space isomorphism. Also for s, t ∈ L,

θ(s)θ(t) = (
∑
x≤s

δ′x)(
∑
y≤t

δ′y ) =
∑

x≤s∧t
δ′x = θ(

∑
x≤s∧t

δx) = θ(s ∧ t).
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Weisner’s Theorem

Theorem (Weisner’s Theorem)

Let L be a finite lattice with at least two elements, and let a ∈ L
such that a 6= 1̂. Then ∑

t : t∧a=0̂

µ(t, 1̂) = 0.

Sketch of Proof: Note that

θ(aδ1̂) = (
∑
x≤a

δ′x)δ′
1̂

= 0,

which implies that aδ1̂ = 0. On the other hand,

aδ1̂ = a
∑
t∈L

µ(t, 1̂)t =
∑
t∈L

µ(t, 1̂)(a ∧ t).

The coefficient of 0̂ in the right hand side of the above equality,∑
t∧a µ(t, 1̂), must be zero because aδ1̂ = 0.
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Crosscut Theorem

Theorem (Crosscut Theorem)

Let L be a finite lattice, and let X be a subset of L such that

1. 1̂ /∈ X,

2. if s ∈ L and s 6= 1̂, then s ≤ t for some t ∈ X.

Then
µ(0̂, 1̂) =

∑
m

(−1)mNm,

where Nm is the number of m-subsets of X whose meet is 0̂.

Sketch of Proof: Since 1̂− t =
∑

s 6≤t δs , we have∏
t∈X

(1̂− t) =
∑
s

δs ,

where s runs over all the elements of L satisfying s 6≤ t for all
t ∈ X . Then

∏
t∈X (1̂− t) = δ1̂ and, by expanding and equaling

the coefficients of 0̂, the proof follows.
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Möbius Function of Distributive Lattices

Remark: Note that X ⊆ L satisfies conditions (1) and (2) in the
previous theorem iff X contains the set of coatoms of L.

Theorem

If L is a finite lattice where 0̂ is not a meet of coatoms, then
µ(0̂, 1̂) = 0. Dually, if 1̂ is not a join of atoms, then µ(0̂, 1̂) = 0.

Sketch of Proof: Let X ⊂ L such that 1̂ /∈ X . Then the
conditions

I all s ∈ L \ {1̂} there is x ∈ X such that s ≤ x and

I X contains all coatoms of L

are equivalent. Therefore the set X of coatoms of L satisfies the
hypothesis of the Crosscut Theorem. Since 0̂ is not a meet of
coatoms, Nm = 0 for each m in the Crosscut Theorem. Hence
µ(0̂, 1̂) = 0.
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Möbius Function of Distributive Lattices

Theorem

Let L = J(P) be a finite distributive lattice. If [I , I ′] ∈ Int(L), we
have µ(I , I ′) = (−1)|I

′\I | if I ′ \ I is an antichain of P, and
µ(I , I ′) = 0 otherwise.

Sketch of Proof: Let n = |I ′ \ I |. The interval [I , I ′] is a
sublattice of J(P), which is isomorphic to Bn iff I ′ \ I is an
antichain of P. Therefore if I ′ \ I is an antichain of P, we have
µ(I , I ′) = (−1)n. On the other hand, if I ′ \ I is not an antichain of
P then there exist a, b ∈ I ′ \ I such that a < b. Since atoms of
[I , I ′] are of the form I ∪ {m}, where m is minimal in I ′ \ I , the
element b is not contained in any atom of [I , I ′]. Therefore I ′ is
not the join (union) of atoms of [I , I ′]. Hence, µ(I , I ′) = 0 when
I ′ \ I is not an antichain of P.
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