Introduction to Symmetric Functions

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

Combinatorics Seminar

Homogeneous Symmetric Functions

Definition

Let $n \in \mathbb{N}_0$ and R be a commutative ring with identity. A homogeneous symmetric function of degree n over R is a formal power series

$$f(x) = \sum_{\alpha} c_{\alpha} x^{\alpha}$$

satisfying that

- 1. α runs over all weak composition $(\alpha_1, \alpha_2, ...)$ of n;
- 2. $c_{\alpha} \in R$ and x^{α} stands for the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \dots$;
- 3. $f(x_{w(1)}, x_{w(2)}, \dots) = f(x_1, x_2, \dots)$ for every bijection $w : \mathbb{N} \to \mathbb{N}$.

The Algebra of Symmetric Functions

Algebraic remarks:

- ► The set of all homogeneous symmetric functions of degree n, which is dented by Λ_R^n , is an R-module.
- ▶ Since $f \in \Lambda_R^n$ and $g \in \Lambda_R^m$ implies $fg \in \Lambda_R^{n+m}$, the vector space

$$\Lambda_R = \Lambda_R^0 \oplus \Lambda_R^1 \oplus \dots,$$

is, in fact, an R-algebra.

Definition

Let R be a commutative ring with 1. The algebra Λ_R described before is called the *algebra of symmetric functions* over R.

Notations Related to Partitions

Definition

A partition λ of $n \in \mathbb{N}_0$ is a decreasing sequence $(\lambda_1, \lambda_2, \dots)$ such that $\lambda_i \in \mathbb{N}_0$ and $\lambda_1 + \lambda_2 + \dots = n$; we write $\lambda \vdash n$. The nonzero λ_i 's are called parts of λ . Note that there exists $N \in \mathbb{N}$ such that $\lambda_i = 0$ for all i > N. The following notations will be used:

- ▶ Par(n) is the set of partitions of n, and p(n) := |Par(n)|;
- ▶ Par := $\cup_{n\geq 0}$ Par(n);
- if $\lambda \in \text{Par}(n)$, we write $|\lambda| = n$;
- ▶ the length $\ell(\lambda)$ of λ is the largest k such that $\lambda_k \neq 0$;
- $m_i = m_i(\lambda)$ is the number of parts of λ equaling i;
- ▶ $\lambda' \in \text{Par}(n)$ given by $m_i(\lambda') = \lambda_i \lambda_{i+1}$ is called the *conjugate* partition of λ .

Monomial Symmetric Functions

Definition

For $\lambda = (\lambda_1, \lambda_2, \dots) \vdash n$, set $m_{\lambda} = \sum_{\alpha} x^{\alpha}$, where α runs over all distinct permutations of the vector $(\lambda_1, \lambda_2, \dots)$. We call m_{α} monomial symmetric function.

Theorem

The set $\{m_{\lambda} : \lambda \vdash n\}$ is a basis for Λ^n .

Sketch of Proof: Let $B = \{m_{\lambda} : \lambda \vdash n\}$. If $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$, then

$$f = \sum_{\alpha} c_{\alpha} x^{\alpha} = \sum_{\lambda \vdash n} c_{\lambda} m_{\lambda}.$$

Therefore B generates Λ^n . The linear independence is obvious. Hence B is a basis for Λ^n and, in particular, dim $\Lambda^n = p(n)$.

Elementary Symmetric Functions

Definition

For $\lambda = (\lambda_1, \lambda_2, \dots)$, if Par is not the empty partition, define

$$e_{\lambda}=e_{\lambda_1}e_{\lambda_2}\ldots, \text{ where } e_n=m_{1^n}=\sum_{i_1<\cdots< i_n}x_{i_1}\ldots x_{i_n};$$

define $e_0 = m_{\emptyset} = 1$. We call e_{λ} an elementary symmetric function.

For an infinite matrix $A = (a_{ij})_{i,j \ge 1}$ with only finitely many nonzero entries, set $r_i = \sum_i a_{ij}$ and $c_i = \sum_i a_{ij}$ and define

$$row(A) = (r_1, r_2, \dots),$$

$$col(A) = (c_1, c_2, \dots).$$

Elementary Symmetric Functions

$\mathsf{Theorem}$

Let $\lambda \vdash n$ and $\alpha = (\alpha_1, \alpha_2, \dots)$ be a weak composition of n. Then the coefficient $M_{\lambda\alpha}$ of x^{α} in e_{λ} equals the number of binary matrices B such that $row(B) = \lambda$ and $col(B) = \alpha$.

Sketch of Proof: Consider the matrix of formal variables $X=(x_{ij})_{i,j\geq 1}$, where $x_{ij}=x_j$ for every i. Let $e_\lambda=\sum_\alpha M_{\lambda\alpha}x^\alpha$. A monomial x^α of e_λ is obtained by choosing, for each i, λ_i entries of the ith row of X and, then, multiplying all the chosen entries. Thus, the coefficient $M_{\lambda\alpha}$ of x^α equals the number of binary matrices B such that $\operatorname{row}(B)=\lambda$ and $\operatorname{col}(B)=\alpha$. Conversely, each of such binary matrices determines a monomial x^α of e_λ .

Corollary

If $\lambda, \mu \vdash n$, then $M_{\lambda\mu} = M_{\mu\lambda}$.

Sketch of Proof: Just note $e_{\lambda} = \sum_{\alpha} M_{\lambda \alpha} x^{\alpha} = \sum_{\mu \vdash n} M_{\lambda \mu} m_{\mu}$.

Elementary Symmetric Functions (continuation)

Proposition

$$\prod_{i,j}(1+x_iy_j)=\sum_{\lambda,\mu}M_{\lambda\mu}m_{\lambda}(x)m_{\mu}(y).$$

Sketch of Proof: Pending...

Definition

Let $n \in \mathbb{N}$. For $\mu, \lambda \in Par(n)$, we write $\mu \leq \lambda$ if

$$\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$$
 for every $i \geq 1$.

The relation \leq is a partial order in Par(n) that is called *dominance* order.

Fundamental Theorem of Symmetric Functions

Theorem (Fundamental Theorem of Symmetric Functions)

The set $\{e_{\lambda} \mid \lambda \vdash n\}$ is a basis for Λ^n . Equivalently, e_1, e_2, \ldots are algebraically independent and generated Λ as a \mathbb{Q} -algebra.

Sketch of Proof: Pending...

Complete Homogeneous Symmetric Functions

Definition

Power Sum Symmetric Functions

Definition

Specializations

Definition

Scalar Product

Definition

Schur Functions

Definition

References

- M. Bona. A Walk Through Combinatorics. World Scientific, New Jersey, 2012.
- G. Grätzer. *Lattice Theory*. Dover Publication, Inc., New Jersey, 2009.
- R. Stanley. *Enumerative Combinatorics*. Cambridge University Press, New York, 2012.
- J. H. van Lint and R. M. Wilson. *A Course in Combinatorics*. Cambridge University Press, Cambridge, 1994.