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Homogeneous Symmetric Functions

Definition

Let n ∈ N0 and R be a commutative ring with identity. A
homogeneous symmetric function of degree n over R is a formal
power series

f (x) =
∑
α

cαx
α

satisfying that

1. α runs over all weak composition (α1, α2, . . . ) of n;

2. cα ∈ R and xα stands for the monomial xα1
1 xα2

2 . . . ;

3. f (xw(1), xw(2), . . . ) = f (x1, x2, . . . ) for every bijection
w : N→ N.
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The Algebra of Symmetric Functions

Algebraic remarks:

I The set of all homogeneous symmetric functions of degree n,
which is dented by Λn

R , is an R-module.

I Since f ∈ Λn
R and g ∈ Λm

R implies fg ∈ Λn+m
R , the vector space

ΛR = Λ0
R ⊕ Λ1

R ⊕ . . . ,

is, in fact, an R-algebra.

Definition

Let R be a commutative ring with 1. The algebra ΛR described
before is called the algebra of symmetric functions over R.
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Notations Related to Partitions

Definition

A partition λ of n ∈ N0 is a decreasing sequence (λ1, λ2, . . . ) such
that λi ∈ N0 and λ1 + λ2 + · · · = n; we write λ ` n. The nonzero
λi ’s are called parts of λ. Note that there exists N ∈ N such that
λi = 0 for all i > N. The following notations will be used:

I Par(n) is the set of partitions of n, and p(n) := |Par(n)|;
I Par := ∪n≥0Par(n);

I if λ ∈ Par(n), we write |λ| = n;

I the length `(λ) of λ is the largest k such that λk 6= 0;

I mi = mi (λ) is the number of parts of λ equaling i ;

I λ′ ∈ Par(n) given by mi (λ
′) = λi − λi+1 is called the

conjugate partition of λ.
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Monomial Symmetric Functions

Definition

For λ = (λ1, λ2, . . . ) ` n, set mλ =
∑

α x
α, where α runs over all

distinct permutations of the vector (λ1, λ2, . . . ). We call mα

monomial symmetric function.

Theorem

The set {mλ : λ ` n} is a basis for Λn.

Sketch of Proof: Let B = {mλ : λ ` n}. If f =
∑

α cαx
α, then

f =
∑
α

cαx
α =

∑
λ`n

cλmλ.

Therefore B generates Λn. The linear independence is obvious.
Hence B is a basis for Λn and, in particular, dim Λn = p(n).
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Elementary Symmetric Functions

Definition

For λ = (λ1, λ2, . . . ), if Par is not the empty partition, define

eλ = eλ1eλ2 . . . , where en = m1n =
∑

i1<···<in

xi1 . . . xin ;

define e0 = m∅ = 1. We call eλ an elementary symmetric function.

For an infinite matrix A = (aij)i ,j≥1 with only finitely many
nonzero entries, set ri =

∑
j aij and cj =

∑
i aij and define

row(A) = (r1, r2, . . . ),

col(A) = (c1, c2, . . . ).
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Elementary Symmetric Functions

Theorem

Let λ ` n and α = (α1, α2, . . . ) be a weak composition of n. Then
the coefficient Mλα of xα in eλ equals the number of binary
matrices B such that row(B) = λ and col(B) = α.

Sketch of Proof: Consider the matrix of formal variables
X = (xij)i ,j≥1, where xij = xj for every i . Let eλ =

∑
αMλαx

α. A
monomial xα of eλ is obtained by choosing, for each i , λi entries
of the ith row of X and, then, multiplying all the chosen entries.
Thus, the coefficient Mλα of xα equals the number of binary
matrices B such that row(B) = λ and col(B) = α. Conversely,
each of such binary matrices determines a monomial xα of eλ.

Corollary

If λ, µ ` n, then Mλµ = Mµλ.

Sketch of Proof: Just note eλ =
∑

αMλαx
α =

∑
µ`n Mλµmµ.
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Elementary Symmetric Functions (continuation)

Proposition∏
i ,j(1 + xiyj) =

∑
λ,µMλµmλ(x)mµ(y).

Sketch of Proof: Pending...

Definition

Let n ∈ N. For µ, λ ∈ Par(n), we write µ ≤ λ if

µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for every i ≥ 1.

The relation ≤ is a partial order in Par(n) that is called dominance
order.
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Fundamental Theorem of Symmetric Functions

Theorem (Fundamental Theorem of Symmetric Functions)

The set {eλ | λ ` n} is a basis for Λn. Equivalently, e1, e2, . . . are
algebraically independent and generated Λ as a Q-algebra.

Sketch of Proof: Pending...
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Complete Homogeneous Symmetric Functions

Definition

Pending...
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Power Sum Symmetric Functions

Definition

Pending...
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Specializations

Definition

Pending...
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Scalar Product

Definition

Pending...
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Schur Functions

Definition

Pending...
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