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Lecture 0: Localization

Localization of Rings. Let R be a commutative ring with identity, and let S be
a submonoid of (R \ {0}, ·). Now one can define the following relation on R × S:
(r1, s1) ∼ (r2, s2) for (r1, s1), (r2, s2) ∈ R×S provided that (r1s2− r2s1)s = 0 for some
s ∈ S. It is not hard to check that ∼ is indeed an equivalence relation on R × S.
We let S−1R denote the set of equivalence classes of ∼ and, for r ∈ R and s ∈ S, we
let r/s denote the equivalence class of (r, s). Motivated by the standard addition and
multiplication of rational numbers, we can now define for r1/s1 and r2/s2 in S−1R the
following operations:

r1
s1

+
r2
s2

:=
r1s2 + r2s1

s1s2
and

r1
s1
· r2
s2

:=
r1r2
s1s2

.

It is routine to verify that both operations are well defined and that (S−1R,+, ·) is a
commutative ring with identity 1/1.

Proposition 1. (S−1R,+, ·) is a commutative ring with identity.

The ring S−1R is called the localization of R at S. We can easily see that the
map π : R → S−1R defined by π(r) = r/1 satisfies the properties in the following
proposition.

Proposition 2. Let R be a commutative ring with identity, and let S be a submonoid
of (R \ {0}, ·). Then the following statements hold.

(1) The map π : R → S−1R is a ring homomorphism satisfying that π(s) is a unit
in S−1R for every s ∈ S. In addition, π is injective if and only if S contains
no zero-divisors of R.

(2) If ϕ : R → T is a ring homomorphism such that ϕ(s) is a unit in T for every
s ∈ S, then there exists a unique ring homomorphism θ : S−1R → T such that
ϕ = θ ◦ π.

Proof. (1) One can readily see that π is a ring homomorphism. For every s ∈ S, it
is clear that 1/s ∈ S−1R and, therefore, π(s) = s/1 is a unit in S−1R. If s ∈ S is a
zero-divisor in R, then taking r ∈ R \ {0} with sr = 0, we can see that π(r) = 0 and
so π is not injective. Conversely, if π(r) = 0 for some r ∈ R \ {0}, then r/1 = 0/1 and
so there is an s ∈ S such that sr = 0.
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(2) For ϕ as in (2), define θ : S−1R → T by θ(r/s) = ϕ(r)ϕ(s)−1. Since ϕ(s) ∈ T×
for every s ∈ S, the element ϕ(r)ϕ(s)−1 belongs to T , and it is easy to check that θ
is a well-defined ring homomorphism. Since θ(π(r)) = θ(r/1) = ϕ(r), the equality
θ ◦ π = ϕ holds. Finally, for any ring homomorphism θ′ : S−1R → T with ϕ = θ′ ◦ π,
we see that θ′(r/s) = θ′(r/1)θ′(1/s) = θ′(π(r))θ′(π(s))−1 = ϕ(r)ϕ(s)−1 = θ(r/s) for all
r/s ∈ S−1R. Hence θ′ = θ, and the uniqueness follows. �

For an ideal I of R, the ideal S−1Rπ(I) of S−1R is called the extension of I by π
and is denoted by S−1I. Observe that every element of S−1I can be written as a/s for
some a ∈ I and s ∈ S.

Proposition 3. Let R be a commutative ring with identity, and let S be a submonoid
of (R \ {0}, ·). Then the following statements hold.

(1) For any ideal J of S−1R the equality S−1π−1(J) = J holds. In particular, every
ideal of S−1R is the extension of an ideal in R.

(2) For an ideal I of R, the equality S−1I = S−1R holds if and only if I ∩ S 6= ∅.
(3) The assignment I 7→ S−1I induces a bijection between the set of prime ideals

of R disjoint from S and the set of prime ideals of S−1R.

Proof. (1) It suffices to show that J is contained in the ideal J ′ := S−1π−1(J). Take
r/s ∈ J . As r/1 = (s/1)(r/s) ∈ J , it follows that r ∈ π−1(J), and so r/1 ∈ S−1π−1(J).
Since J ′ is an ideal of S−1R, we see that r/s = (1/s)(r/1) ∈ J ′. Hence J ′ = J . The
second statement is an immediate consequence of the first one.

(2) If S−1I = S−1R, then a/s = 1/1 for some a ∈ I and s ∈ S. So we can take s′ ∈ S
such that (a− s)s′ = 0. This means that ss′ = as′ ∈ I, whence I ∩ S = ∅. Conversely,
assume that I ∩S 6= ∅ and take a ∈ I ∩S. Then for all r/s ∈ S−1R, we see that ra ∈ I
while sa ∈ S, which implies that r/s = (ra)/(sa) ∈ S−1I. Thus, S−1I = S−1R.

(3) Let I be the set of prime ideals in R that are disjoint from S, and let J be the
set of prime ideals in S−1R. Let e : I → J and c : J → I be the maps given by
the assignments I 7→ S−1I and J 7→ π−1(J), respectively. Since homomorphic inverse
images of prime ideals are prime ideals, c is well defined. To check that e is also well
defined, take P ∈ I and let us verify that S−1P is a prime ideal. Take r1, r2 ∈ R
and s1, s2 ∈ S such that (r1/s1)(r2/s2) ∈ S−1P . Then there are elements a ∈ P and
s, s′ ∈ S such that (r1r2s−as1s2)s′ = 0, which implies that r1r2ss

′ ∈ P . As P is prime
and disjoint from S, we obtain that either r1 ∈ P or r2 ∈ P , from which we deduce
that either r1/s1 ∈ S−1P or r2/s2 ∈ S−1P . Hence S−1P is a prime ideal, and so the
map e is well defined. Part (1) guarantees that e ◦ c is the identity of J . Proving
that c ◦ e is the identity of I amounts to arguing that c(e(P )) ⊆ P for every P ∈ I .
To do so, take a3/s3 ∈ e(P ) = S−1P for a3 ∈ P and s3 ∈ S. If r ∈ π−1(a3/s3), then
r/1 = a3/s3 and there is an s′′ ∈ S with (rs3 − a3)s′′ = 0. This implies that rs3 ∈ P ,
from which we deduce that r ∈ P . Hence c(e(P )) ⊆ P , as desired. Thus, c ◦ e is the
identity of I , which completes the proof. �
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