IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

LECTURE 0: LOCALIZATION

Localization of Rings. Let R be a commutative ring with identity, and let S be a submonoid of $(R \setminus \{0\}, \cdot)$. Now one can define the following relation on $R \times S$: $(r_1, s_1) \sim (r_2, s_2)$ for $(r_1, s_1), (r_2, s_2) \in R \times S$ provided that $(r_1s_2 - r_2s_1)s = 0$ for some $s \in S$. It is not hard to check that \sim is indeed an equivalence relation on $R \times S$. We let $S^{-1}R$ denote the set of equivalence classes of \sim and, for $r \in R$ and $s \in S$, we let r/s denote the equivalence class of (r, s). Motivated by the standard addition and multiplication of rational numbers, we can now define for r_1/s_1 and r_2/s_2 in $S^{-1}R$ the following operations:

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} := \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$$
 and $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} := \frac{r_1 r_2}{s_1 s_2}$.

It is routine to verify that both operations are well defined and that $(S^{-1}R, +, \cdot)$ is a commutative ring with identity 1/1.

Proposition 1. $(S^{-1}R, +, \cdot)$ is a commutative ring with identity.

The ring $S^{-1}R$ is called the *localization* of R at S. We can easily see that the map $\pi \colon R \to S^{-1}R$ defined by $\pi(r) = r/1$ satisfies the properties in the following proposition.

Proposition 2. Let R be a commutative ring with identity, and let S be a submonoid of $(R \setminus \{0\}, \cdot)$. Then the following statements hold.

- (1) The map $\pi: R \to S^{-1}R$ is a ring homomorphism satisfying that $\pi(s)$ is a unit in $S^{-1}R$ for every $s \in S$. In addition, π is injective if and only if S contains no zero-divisors of R.
- (2) If $\varphi \colon R \to T$ is a ring homomorphism such that $\varphi(s)$ is a unit in T for every $s \in S$, then there exists a unique ring homomorphism $\theta \colon S^{-1}R \to T$ such that $\varphi = \theta \circ \pi$.

Proof. (1) One can readily see that π is a ring homomorphism. For every $s \in S$, it is clear that $1/s \in S^{-1}R$ and, therefore, $\pi(s) = s/1$ is a unit in $S^{-1}R$. If $s \in S$ is a zero-divisor in R, then taking $r \in R \setminus \{0\}$ with sr = 0, we can see that $\pi(r) = 0$ and so π is not injective. Conversely, if $\pi(r) = 0$ for some $r \in R \setminus \{0\}$, then r/1 = 0/1 and so there is an $s \in S$ such that sr = 0.

F. GOTTI

(2) For φ as in (2), define $\theta \colon S^{-1}R \to T$ by $\theta(r/s) = \varphi(r)\varphi(s)^{-1}$. Since $\varphi(s) \in T^{\times}$ for every $s \in S$, the element $\varphi(r)\varphi(s)^{-1}$ belongs to T, and it is easy to check that θ is a well-defined ring homomorphism. Since $\theta(\pi(r)) = \theta(r/1) = \varphi(r)$, the equality $\theta \circ \pi = \varphi$ holds. Finally, for any ring homomorphism $\theta' \colon S^{-1}R \to T$ with $\varphi = \theta' \circ \pi$, we see that $\theta'(r/s) = \theta'(r/1)\theta'(1/s) = \theta'(\pi(r))\theta'(\pi(s))^{-1} = \varphi(r)\varphi(s)^{-1} = \theta(r/s)$ for all $r/s \in S^{-1}R$. Hence $\theta' = \theta$, and the uniqueness follows.

For an ideal I of R, the ideal $S^{-1}R\pi(I)$ of $S^{-1}R$ is called the *extension* of I by π and is denoted by $S^{-1}I$. Observe that every element of $S^{-1}I$ can be written as a/s for some $a \in I$ and $s \in S$.

Proposition 3. Let R be a commutative ring with identity, and let S be a submonoid of $(R \setminus \{0\}, \cdot)$. Then the following statements hold.

- (1) For any ideal J of $S^{-1}R$ the equality $S^{-1}\pi^{-1}(J) = J$ holds. In particular, every ideal of $S^{-1}R$ is the extension of an ideal in R.
- (2) For an ideal I of R, the equality $S^{-1}I = S^{-1}R$ holds if and only if $I \cap S \neq \emptyset$.
- (3) The assignment $I \mapsto S^{-1}I$ induces a bijection between the set of prime ideals of R disjoint from S and the set of prime ideals of $S^{-1}R$.
- *Proof.* (1) It suffices to show that J is contained in the ideal $J' := S^{-1}\pi^{-1}(J)$. Take $r/s \in J$. As $r/1 = (s/1)(r/s) \in J$, it follows that $r \in \pi^{-1}(J)$, and so $r/1 \in S^{-1}\pi^{-1}(J)$. Since J' is an ideal of $S^{-1}R$, we see that $r/s = (1/s)(r/1) \in J'$. Hence J' = J. The second statement is an immediate consequence of the first one.
- (2) If $S^{-1}I = S^{-1}R$, then a/s = 1/1 for some $a \in I$ and $s \in S$. So we can take $s' \in S$ such that (a-s)s' = 0. This means that $ss' = as' \in I$, whence $I \cap S = \emptyset$. Conversely, assume that $I \cap S \neq \emptyset$ and take $a \in I \cap S$. Then for all $r/s \in S^{-1}R$, we see that $ra \in I$ while $sa \in S$, which implies that $r/s = (ra)/(sa) \in S^{-1}I$. Thus, $S^{-1}I = S^{-1}R$.
- (3) Let \mathscr{I} be the set of prime ideals in R that are disjoint from S, and let \mathscr{I} be the set of prime ideals in $S^{-1}R$. Let $e \colon \mathscr{I} \to \mathscr{I}$ and $c \colon \mathscr{I} \to \mathscr{I}$ be the maps given by the assignments $I \mapsto S^{-1}I$ and $J \mapsto \pi^{-1}(J)$, respectively. Since homomorphic inverse images of prime ideals are prime ideals, c is well defined. To check that e is also well defined, take $P \in \mathscr{I}$ and let us verify that $S^{-1}P$ is a prime ideal. Take $r_1, r_2 \in R$ and $s_1, s_2 \in S$ such that $(r_1/s_1)(r_2/s_2) \in S^{-1}P$. Then there are elements $a \in P$ and $s, s' \in S$ such that $(r_1/s_1)(r_2/s_2) \in S^{-1}P$. Then there are elements $a \in P$ and $a, a, b \in S$ such that $a, b \in S$ such that $a, b \in S$ such that $a, b \in S$ is prime and disjoint from $a, b \in S$, we obtain that either $a, b \in S$ or $a, b \in S$. If $a, b \in S$ is prime ideal, and so the map $a, b \in S$ is the identity of $a, b \in S$. Hence $a, b \in S$ is the identity of $a, b \in S$. To do so, take $a, b \in S$ amounts to arguing that $a, b \in S$. If $a, b \in S$ is the identity of $a, b \in S$. To do so, take $a, b \in S$ is an $a, b \in S$ with $a, b \in S$ is the identity of $a, b \in S$. If $a, b \in S$ is the identity of $a, b \in S$ is the identity of $a, b \in S$. If $a, b \in S$ is the identity of $a, b \in S$ with $a, b \in S$ is the identity of $a, b \in S$. Then there is an $a, b \in S$ is the identity of $a, b \in S$ with $a, b \in S$ is the identity of $a, b \in S$. Then there is an $a, b \in S$ is the identity of $a, b \in S$ with $a, b \in S$ is the identity of $a, b \in S$, which completes the proof.

Department of Mathematics, MIT, Cambridge, MA 02139 $\it Email~address:$ fgotti@mit.edu