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Integral Extensions I

We will tacitly assume that all rings in this section are commutative with identities.
Throughout this section, R ⊆ S is a ring extension, which means that R is a subring
of the ring S. An element s ∈ S is algebraic (resp., integral) over R if there exists a
nonzero polynomial (resp., a monic polynomial) f(x) ∈ R[x] such that f(s) = 0. The
extension R ⊆ S is called integral and the ring S is called integral over R provided that
every element of S is integral over R. Observe that when R and S are fields, R ⊆ S
is integral if and only if S is an algebraic extension of R. We proceed to characterize
integral elements.

Theorem 1. Let R ⊆ S be a ring extension. For s ∈ S, the following statements are
equivalent.

(a) s is integral over R.

(b) R[s] is a finitely generated R-module.

(c) s is contained in a subring T of S that is a finitely generated R-module.

Proof. (a) ⇒ (b): Since s is integral over R, there is a monic polynomial f(x) ∈ R[x]
having s as a root. Take g(s) ∈ R[s] for some g(x) ∈ R[x]. Because f(x) is monic,
we can write g(x) = q(x)f(x) + r(x) for q(x), r(x) ∈ R[x] with deg r < d := deg f .
Since g(s) = r(s), the element g(s) is a linear combination with coefficients in R of the
elements 1, s, . . . , sd−1. Hence R[s] can be generated by the set {sj : j ∈ J0, d− 1K} as
an R-module.

(b) ⇒ (c): Take T = R[s].

(c) ⇒ (a): Let T be the subring described in the statement (c), and let {t1, . . . , tn}
be a generating set of T as an R-module. As 1 ∈ T , there are coefficients r1, . . . , rn ∈ R
such that

∑n
i=1 riti = 1. Since s ∈ T , we see that sti ∈ T for every i ∈ J1, nK. Hence,

for each j ∈ J1, nK, we can write stj =
∑n

i=1 cijti, and so

(0.1)
n∑

i=1

(δijs− cij)ti = 0,

where δij is the Kronecker delta (i.e., δij = 1 if i = j, and δij = 0 otherwise). After
considering the n× n matrix M := (δijs− cij)i,j∈J1,nK and the vector v := (t1, . . . , tn)T ,
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we can write the equalities in (0.1) simply as Mv = 0. By Cramer’s Rule, (detM)ti = 0
for every i ∈ J1, nK. As a result,

detM = (detM)
n∑

i=1

riti =
n∑

i=1

ri(detM)ti = 0.

After taking C to be the matrix (cij)i,j∈J1,nK, one obtains that s is a root of the monic
polynomial det(xI − C) ∈ R[x], which is the characteristic polynomial of C. Hence s
is integral over R, which concludes the proof. �

For a ring extension R ⊆ S, we say that S is finite over R provided that S is finitely
generated as an R-module.

Corollary 2. Every finite ring extension is integral.

Let us show that the extension of a ring by finitely many integral elements is integral.

Proposition 3. Let R ⊆ S be a ring extension, and let s1, . . . , sn ∈ S be integral
elements over R. Hence R[s1, . . . , sn] is a finitely generated R-module and, therefore,
R ⊆ R[s1, . . . , sn] is an integral extension.

Proof. It follows from Theorem 1 that R[s1] is a finitely generated module over R.
Assume further that R[s1, . . . , sj] is a finitely generated module over R for some
j ∈ J1, n − 1K. Since sj+1 is integral over R, it is clearly integral over R[s1, . . . , sj],
and it follows from Theorem 1 that R[s1, . . . , sj+1] is a finitely generated module
over R[s1, . . . , sj]. Thus, it follows by transitivity of finitely generated modules that
R[s1, . . . , sj+1] is a finitely generated R-module. Hence R[s1, . . . , sn] is a finitely gen-
erated R-module by induction, and Corollary 2 guarantees that R[s1, . . . , sn] is an
integral extension of R. �

Now we prove that integrality is transitive.

Proposition 4. Let R ⊆ S and S ⊆ T be ring extensions. If R ⊆ S and S ⊆ T are
integral, then R ⊆ T is also integral.

Proof. Take t ∈ T . Since T is integral over S, there is a polynomial p(x) = xn +∑n−1
i=0 cix

i ∈ S[x] for some n ∈ N having t as a root. As S is integral over R, the
coefficients c0, . . . , cn−1 are integral over R, and so R[c0, . . . , cn−1] is a finitely gener-
ated R-module by Proposition 3. Because t is integral over R[c0, . . . , cn−1], the ring
R[c0, . . . , cn−1, t] is also a finitely generated module over R[c0, . . . , cn−1]. Hence the ex-
tension R ⊆ R[c0, . . . , cn−1, t] is finite and so integral. In particular, t must be integral
over R. Thus, R ⊆ T is an integral extension. �

The integrality of an extension ring is preserved by quotients and localizations, as
the following two propositions show.
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Proposition 5. Let R ⊆ S be an integral ring extension, and let J be an ideal of S.
Then S/J is an integral extension of R/(J ∩R).

Proof. Fix s ∈ S. As R ⊆ S is an integral extension, there is a monic polynomial
xn+

∑n−1
i=0 cix

i ∈ R[x] having s as a root. Setting c̄i = ci+J , we see that xn+
∑n−1

i=0 c̄ix
i

is a monic polynomial with coefficients in (R + J)/J ∼= R/(J ∩ R) having s + J as a
root. Hence S/J is an integral extension of R/(J ∩R). �

Proposition 6. Let R ⊆ S be an integral ring extension, and let M be a submonoid
of (R \ {0}, ·). Then M−1S is an integral extension of M−1R.

Proof. If M contains a nonzero zero-divisor of S, then the kernel J of S →M−1S (that
is, J := {s ∈ S : sm = 0 for some m ∈ M}) is a nonzero ideal of S, but we can easily
verify that M−1S ∼= N−1(S/J) and M−1R ∼= N−1((R + J)/J), where N is the image
of M in S/J (which is a multiplicative set with no zero-divisors). Thus, there is no
loss of generality in assuming that M contains no zero-divisors of S, and we do so.

Take s/m ∈M−1S with s ∈ S and m ∈M . Since the extension R ⊆ S is integral, s
is a root of a monic polynomial xn +

∑n−1
i=0 cix

i ∈ R[x]. Therefore( s
m

)n
+

n−1∑
i=0

ci
mn−i

( s
m

)i
= m−n

(
sn +

n−1∑
i=0

cis
i
)

= 0,

and so s/m is a root of the monic polynomial xn +
∑n−1

i=0 (ci/m
n−i)xi ∈ M−1R[x]. As

a consequence, s/m is integral over M−1R. Hence M−1S is an integral extension of
M−1R. �

Proposition 7. Let R ⊆ S be an integral extension of integral domains. Then R is a
field if and only if S is a field.

Proof. First, assume that R is a field. Take s ∈ S \ {0}. As s is integral over R,
there is a monic polynomial in R[x] having s as a root. Assume that, among all such
polynomials, xn −

∑n−1
i=0 cix

i has minimum degree. Hence c0 ∈ R× and, therefore,

s
(
sn−1 −

n−1∑
i=1

cis
i−1
)
c−10 = 1.

This implies that s is a unit of S. Hence S is a field.
Conversely, assume that S is a field. Take now r ∈ R \ {0}. As r−1 ∈ S and S is

an integral extension of R, there exists a polynomial xm −
∑m−1

i=0 dix
i ∈ R[x] having

r−1 as a root, and so r−m =
∑m−1

i=0 dir
−i. After multiplying this equality by rm−1, we

obtain that r−1 =
∑m−1

i=0 dir
m−1−i ∈ R. Thus, R is a field. �

The set RS consisting of all elements of S that are integral over R is an integral
extension of R, as we proceed to show.
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Proposition 8. Let R ⊆ S be a ring extension. The set RS is an integral extension
of R, which contains every subring of S that is integral over R.

Proof. Take s, t ∈ RS. Since s and t are integral over R, the ring extension R ⊆ R[s, t]
is integral by Proposition 3. Hence the elements s ± t and st are integral over R. As
a result, RS is a subring of S. On the other hand, it is clear that RS contains every
subring of S that is integral over R. �

With notation as in Proposition 8, the ring RS is called the integral closure of R
in S. The ring R is integrally closed in S if RS = R. The integral closure of an
integral domain R, denoted by R, is the integral closure of R in its field of fractions
qf(R), and R is called integrally closed if R = R. It turns out that the integral closure
commutes with localization, as the following proposition indicates.

Proposition 9. Let R ⊆ S be a ring extension, and let M be a multiplicative subset
of R. Then M−1RS is the integral closure of M−1R in M−1S.

Proof. Observe that M−1RS is the subring of qf(S) generated by M−1 and RS. As
elements in both sets are integral over M−1R, it follows that M−1RS is contained
in the closure of M−1R in M−1S. To argue the reverse inclusion, take an element
q ∈ M−1S that is integral over M−1R, and let xn +

∑n−1
i=0 cix

i be a polynomial with
coefficients in M−1R having q as a root. Now take a common denominator m ∈M such
that q = s/m and ci = ri/m for some s ∈ S and r0, . . . , rn−1 ∈ R. After multiplying
qn +

∑n−1
i=0 ciq

i = 0 by mn, we see that

sn +
n−1∑
i=0

(mn−i−1ri)s
i = mn

(
qn +

n−1∑
i=0

ciq
i
)

= 0.

Hence s is a root of the monic polynomial xn +
∑n−1

i=0 m
n−i−1xi ∈ R[x] and, therefore,

q = s/m ∈ M−1RS. As a consequence, the integral closure of M−1R in M−1S is
contained in M−1RS, which concludes our proof. �

Corollary 10. Let R be an integral domain, and let S be a multiplicative subset of R.
If R is integrally closed, so is S−1R.

For an integral domain, being integrally closed is a local property.

Proposition 11. For an integral domain R, the following statements are equivalent

(a) R is integrally closed.

(b) RP is integrally closed for every prime ideal P of R.

(c) RM is integrally closed for every maximal ideal M of R.

Proof. Exercise. �

It turns out that every UFD is integrally closed.
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Proposition 12. Every UFD is integrally closed.

Proof. Let R be a UFD, and take r/s ∈ qf(R) \ {0} to be an integral element over R,
assuming that r, s ∈ R have no common prime factors. Let xn −

∑n−1
i=0 cix

i be a

polynomial in R[x] having r/s as a root. After multiplying (r/s)n =
∑n−1

i=0 ci(r/s)
i by

sn, one obtains rn = s
∑n−1

i=0 r
isn−1−i. Therefore s divides rn in R. This, together with

the fact that R is a UFD, ensures that s ∈ R×, whence r/s = rs−1 ∈ R. Thus, R is
integrally closed. �

Example 13. Since Z is a UFD, then it is integrally closed by Proposition 12. How-
ever, Z is not integrally closed in C. Let us further show that the integral closure
R := ZC of Z in C is not even finitely generated as a Z-module. To argue this, ob-
serve that for every n ∈ N, the polynomial p(x) = xn + 2 is irreducible over Q (by
Eisenstein Criterion). Thus, taking r ∈ R to be a root of p(x), we see that p(x) is the
minimal polynomial of r and, therefore, the subset {1, r, . . . , rn−1} of R are integrally
independent, (i.e., linearly independent over Z).

Unlike localizations, quotients of integral domains does not preserve the property of
being integrally closed.

Example 14. Since Z[x] is a UFD, it is integrally closed. Consider the ring homomor-
phism Z[x]→ Z[

√
5] induced by the assignment x 7→

√
5. Since x2 − 5 is the minimal

polynomial of
√

5 over Q, it follows that Z[x]/(x2 − 5) is isomorphic to Z[
√

5], which
is not integrally closed (see exercises below).

Exercises

Exercise 1. Let R ⊆ S be an integral ring extension. For any prime ideal Q of S,
show that Q is a maximal ideal of S if and only if Q ∩R is a maximal ideal of R.

Exercise 2. Let R be an integral domain, and let K be an algebraic extension of the
field of fractions of R. Prove that K is the integral closure of R in K.

Exercise 3. For an integral domain R, show that the following statements are equiv-
alent.

(a) R is integrally closed.

(b) RP is integrally closed for every prime ideal P of R.

(c) RM is integrally closed for every maximal ideal M of R.

Exercise 4. Let d be a squarefree nonzero integer. Prove the following statements.

(1) The integral closure of Z in Q(
√
d) is Z[

√
d] if d ≡ 2, 3 (mod 4).
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(2) The integral closure of Z in Q(
√
d) is Z

[
1+
√
d

2

]
if d ≡ 1 (mod 4).

(3) The ring Z[
√
d] is integrally closed if and only if d ≡ 2, 3 (mod 4).
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